The Role of Graph Entropy and Constraints on Fault Localization and Structure Evolution in Data Networks

Mathematics of Networks 15, University of Bath

Phil Tee
e-mail: phil@moogsoft.com
September 23, 2016

University of Sussex and Moogsoft Inc
The Journey From Fault Localization to Graph Evolution

Graph Entropy and Fault Localization

Vertex Entropy and Significant Events [1]

Deviation of Degree Distributions from Power Laws

Entropic Model of Graph Evolution

Constraint Models of Graph Evolution
• Fault localization challenge = too many noisy events
• Graph entropy could eliminate noise, but is global
• Introduce local vertex entropy following Dehmer [2].
• Measures applied to real datasets
• Problems with power law node degree fits with these networks
• Introduce a new constraint model to explain deviations
• New vertex entropy, network growth model possible?
Problem Statement
Spotting Events that Threaten Availability

- Fault Localization Algorithms most common solution
- They struggle to scale to 10,000’s events per second, mostly noise
- Common Approaches to Mitigate
 - Manual blacklisting
 - Restriction of monitoring to core devices
 - Deploy headcount
- Can we use topology and graph theory here? ¹

“74% Application Incidents reported by End Users”

¹We use standard Graph Theory notation throughout, see any standard text such as [3]. We denote a graph by $G(V, E)$ a double set of vertices V and their edges E
Theoretical Background
How important is a Node in a Graph

- Network Science demonstrates some nodes are more critical (Barabási-Albert [4], [5])
- High degree nodes destroy graph connectivity quicker than low degree
- Conclusion: **High Degree Nodes are more "Important"**
- Many other measures exist, we focus on entropy
What is Graph Entropy $H[G(V, E)]$

- Measures structural *information* in a graph. The more meshed a graph, the lower the entropy
- **Chromatic Entropy**
 - Defined using Chromatic number of the graph. Acts like "negentropy"
- **Körner or Structural Entropy**
 - Closely related, uses non adjacent sets of vertices
- **Von Neumann Entropy**
 - Defined by the eigenvalues of the *Laplacian* matrix of a graph. Measures the connectivity of a graph

2We assume in our treatment that vertex emission probabilities are all uniform
Graph Entropy a Measure of Redundancy

Graph Types that Maximise and Minimise Entropy

<table>
<thead>
<tr>
<th></th>
<th>Chromatic</th>
<th>Structural</th>
<th>Von Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>K_n</td>
<td>S_n</td>
<td>K_n</td>
</tr>
<tr>
<td>Minimum</td>
<td>S_n</td>
<td>K_n</td>
<td>P_n</td>
</tr>
</tbody>
</table>

\(^3\text{In all of our work we only consider connected, simple graphs}\)
Global Measures Computationally too Complex

- It is only valid globally, no value for an individual node
- All are expensive to compute, and contain \(NP \) complete problems

We need a vertex value such that

\[
H[G(\mathcal{V}, \mathcal{E})] \sim \sum_{v \in \mathcal{G}} H(v)
\]
• Dehmer ([2]) creates a framework for calculating graph entropy in terms of vertices

• Introduces vertex information functional $f_i(v)$ of a node v, with vertex **probability** defined as

$$p_i(v) = \frac{f_i(v)}{\sum_{v \in G} f_i(v)}$$

• Node entropy $H(v) = -p_i \log p_i$, and total graph entropy $H(G) = \sum_{v \in G} H(v)$
Introducing the Local Vertex Entropy VE and VE'

- We define an inverse degree entropy for a node $\text{VE}(v)$ as:
 \[
p_i(v_i) = \frac{1}{k_i} \text{ where } k_i \text{ is the degree of } v_i, \quad \text{VE}(v_i) = \frac{1}{k_i} \log_2(k_i)
 \]

- And fractional degree entropy of a node $\text{VE'}(v)$ as:
 \[
p_i(v_i) = \frac{k_i}{2|E|}, \quad \text{VE'}(v_i) = \frac{k_i}{2|E|} \log_2 \left(\frac{2|E|}{k_i} \right)
 \]

- These two measures do not take into account high degree nodes which are redundantly connected into the graph
Not all High Degree Nodes are Equal!

- To capture importance more accurately we suppress entropy for highly meshed nodes.
- A highly meshed network has local similarity to the perfect graph K_n. The modified clustering coefficient C_i of the neighborhood of a vertex i scales our metrics as:

$$C_i = \frac{2|E_1(v_i)|}{k_i(k_i + 1)}, \quad NVE(v) = \frac{1}{C_i} VE(v) \text{ and } NVE'(v) = \frac{1}{C_i} VE'(v)$$

- And for the whole graphs:

$$NVE(G) = \sum_{i=0}^{i<n} \frac{(k_i + 1)}{2|E_i|} \log_2(k_i)$$

$$NVE'(G) = \sum_{i=0}^{i<n} \frac{k_i^2(k_i + 1)}{4|E||E_i|} \log_2 \left(\frac{2|E|}{k_i} \right)$$

4we include the central vertex in our version to avoid problematic zeros.
Comparing \(NVE\) and \(NVE'\) to Global Entropy Measures

Values of Normalized Entropy for Special Graphs

<table>
<thead>
<tr>
<th>(S_n)</th>
<th>(NVE)</th>
<th>(NVE')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_n)</td>
<td>(\frac{n}{2(n-1)} \log_2(n - 1))</td>
<td>(\frac{1}{2} \log_2{2(n - 1)} + \frac{n}{4})</td>
</tr>
<tr>
<td>(K_n)</td>
<td>(\frac{n}{n-1} \log_2(n - 1))</td>
<td>(\log_2(n))</td>
</tr>
<tr>
<td>(P_n)</td>
<td>(\frac{3}{4}(n - 2))</td>
<td>(\frac{1}{n-1} + \frac{3n-4}{2(n-1)} \log_2(n - 1))</td>
</tr>
<tr>
<td>(C_n)</td>
<td>(\frac{3}{4}n)</td>
<td>(\frac{3}{2} \log_2(n))</td>
</tr>
</tbody>
</table>

Maximal and Minimal Total Vertex Entropy Graph Types

<table>
<thead>
<tr>
<th>(NVE)</th>
<th>(NVE')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>(C_n \sim P_n)</td>
</tr>
<tr>
<td>Minimum</td>
<td>(S_n)</td>
</tr>
</tbody>
</table>

Close inspection of the minima and maxima indicate that \(NVE'\) has similar limit behavior to Structural entropy, and \(NVE\) to Chromatic entropy.
Our Experimental Data Sets

- **Commercial:** Moogsoft routinely collects the following from our customers
 - **Topology:** Manually curated and automatically discovered lists of node to node connections
 - **Network Events:** From their (Moogsoft Supplied) management systems collections of monitored network events
 - **Incidents:** From their help-desk and escalation systems collections of escalated events.

- Our principal dataset covers **225,239 nodes, 96,325,275 events and 37,099 incidents**

- **Academic:** "The Internet Topology Zoo" by S.Knight *et al* [6] curates **15,523 network nodes** across a number of real world telecoms networks.
What Would an Ideal Distribution Look Like?

Ideal Distribution of Incidents and Events
Distributions of NVE

Distribution of Incidents and Events by NVE

Analysis

Noticeable separation of distribution to favor high NVE for Incidents
Distributions of NVE'

Analysis

Separation of distribution of Incidents and Events by NVE' statistically significant
Comparing NVE' to Degree Importance

- Taking the same dataset and comparing distributions it is evident NVE' is more predictive than node degree

Distribution of Incidents by $NVE'(v)$ and Node Degree

Distribution of Events by $NVE'(v)$ and Node Degree
A Constraint Based model of Network Growth
The Barabási-Albert Model Recap

- Deduces a degree distribution power law from the principles of
 - *Growth*: Starting at time t_i a single new node is added at each time interval t to a network of m_0 nodes. When the node is added to the network it attaches to m other nodes. This process continues indefinitely.
 - *Preferential Attachment*: The node attaches to other nodes with a probability determined by the degree of the target node, such that more highly connected nodes are preferred over lower degree nodes.
- Central prediction is power law degree distributions:
 \[P(k) = \frac{2m^2 t}{m_0 + t} \frac{1}{k^\gamma}, \text{ with } \gamma = 3 \]
Analysis of Networks Demonstrates Deviations at High k

- Considerable deviations from Power Law distribution at high degree in Analyzed Networks [7], [6]

IT Zoo Networks

Facebook Friendship Graph
Not Confined to any Particular Type of Graph...

- Seen again in citation networks, and across all 20 datasets analyzed.

Patent Citations

\[\gamma : 2.615-3.118 \]

\[<\gamma> : 2.981 \]

ArXiv HepTh Citation Graph

\[\gamma : 2.709-2.142 \]

\[<\gamma> : 2.220 \]
Our Proposed Model

- We propose a simple average constraint on the maximum degree of a node ‘c’
- We scale the probability of attachment by the capacity of the node relative to average capacity

\[\Pi_i = \zeta_i \times P(attachment) \text{, where } \zeta_i = \frac{(c - k_i)}{\langle c_i(t) \rangle} \]

- This can be solved using the continuum approach for \(P(k) \)

\[
P(k) = \frac{2c\rho^{2/\alpha} t}{\alpha(t + m_0)} \left(\frac{(c - k)^{\frac{2}{\alpha} - 1}}{k^{\frac{2}{\alpha} + 1}} \right) \sim \frac{1}{k\gamma}
\]

where \(\alpha = \frac{c}{c - 2m} \) and \(\rho = \frac{m}{c - m} \) and \(\gamma = \frac{2}{\alpha} + 1 \)
Analysis of Datasets Confirms an Improved Prediction for γ

- 9 of 20 datasets analyzed show an agreement with calculated γ of < 10% (shown in bold below)

<table>
<thead>
<tr>
<th>Source</th>
<th>γ Calculated</th>
<th>γ Measured</th>
<th>δ Constraints</th>
<th>δ Preferential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arxiv - HepTh (Cit)</td>
<td>2.71</td>
<td>2.71</td>
<td>0.05%</td>
<td>11.00%</td>
</tr>
<tr>
<td>Berkley Stanford Web</td>
<td>2.89</td>
<td>2.85</td>
<td>1.44%</td>
<td>5.00%</td>
</tr>
<tr>
<td>IT Zoo</td>
<td>2.50</td>
<td>2.54</td>
<td>1.62%</td>
<td>18.00%</td>
</tr>
<tr>
<td>Pokec</td>
<td>2.70</td>
<td>2.65</td>
<td>1.68%</td>
<td>13.00%</td>
</tr>
<tr>
<td>Web Provider</td>
<td>2.78</td>
<td>2.68</td>
<td>3.54%</td>
<td>12.00%</td>
</tr>
<tr>
<td>IMDB Movie Actors</td>
<td>2.43</td>
<td>2.30</td>
<td>5.83%</td>
<td>30.43%</td>
</tr>
<tr>
<td>Arxiv - HepTh (Collab)</td>
<td>2.81</td>
<td>2.64</td>
<td>6.42%</td>
<td>13.00%</td>
</tr>
<tr>
<td>Internet Router</td>
<td>2.66</td>
<td>2.48</td>
<td>7.15%</td>
<td>20.97%</td>
</tr>
<tr>
<td>Arxiv - Astro Phys</td>
<td>2.54</td>
<td>2.77</td>
<td>8.31%</td>
<td>8.00%</td>
</tr>
<tr>
<td>Twitter (Follower)</td>
<td>2.96</td>
<td>2.65</td>
<td>11.54%</td>
<td>13.00%</td>
</tr>
<tr>
<td>Patent Citation</td>
<td>2.59</td>
<td>2.28</td>
<td>13.9%</td>
<td>32.00%</td>
</tr>
<tr>
<td>Co-authors, math</td>
<td>2.87</td>
<td>2.5</td>
<td>14.80%</td>
<td>20.00%</td>
</tr>
<tr>
<td>Enron Email</td>
<td>2.96</td>
<td>2.57</td>
<td>15.05%</td>
<td>17.00%</td>
</tr>
<tr>
<td>AS Skitter</td>
<td>2.92</td>
<td>2.47</td>
<td>18.19%</td>
<td>21.00%</td>
</tr>
<tr>
<td>Arxiv - Cond Matt</td>
<td>2.69</td>
<td>2.24</td>
<td>20.37%</td>
<td>34.00%</td>
</tr>
<tr>
<td>Metabolic, E. coli</td>
<td>2.73</td>
<td>2.20</td>
<td>24.13%</td>
<td>36.36%</td>
</tr>
<tr>
<td>Twitter (Circles)</td>
<td>2.72</td>
<td>2.01</td>
<td>35.44%</td>
<td>49.00%</td>
</tr>
<tr>
<td>Co-authors, neuro</td>
<td>2.88</td>
<td>2.1</td>
<td>37.36%</td>
<td>42.86%</td>
</tr>
<tr>
<td>Facebook</td>
<td>2.25</td>
<td>1.39</td>
<td>62.08%</td>
<td>116.00%</td>
</tr>
<tr>
<td>Co-authors, SPIRES</td>
<td>2.37</td>
<td>1.2</td>
<td>97.58%</td>
<td>150.00%</td>
</tr>
</tbody>
</table>
Could Graph Entropy Explain Both Growth Models?
Basis of Model

• The 2nd law of thermodynamics states that total entropy must tend to a maximum in any closed system.
• One consequence is the concept of entropic force, which explains natural processes such as osmosis.

\[F = T \Delta S \]

\(T \) is thermodynamic ‘temperature’ and \(S \) is the entropy of the system.

• Entropy of the whole graph has been considered before ([8]). We imagine a vertex level dynamic process.
• Propose probability of attachment to a given node is proportional to the relative ‘attraction’ of ‘force’ exerted by a particular node:

\[\Pi_i = \frac{F_i(v_i)}{\sum_{j \neq i} F_j(v_j)} \]

we can then follow continuum analysis.
Overview of Analysis

- We factor out the temperature dependence, and by approximating the denominator using an expectation value of the change in entropy, we arrive at

\[\Pi_i = \epsilon \Delta S_i, \text{ where } \epsilon = \frac{1}{|V| \times \mathbb{E}(\Delta S)} \]

- To calculate \(\Delta S_i \) we note \(\Delta S_i = \frac{\partial S_i}{\partial k} \times \delta k \), with, for a single time step, \(\delta k = 2m \). This gives as an attachment probability

\[\Pi_i = \epsilon 2m \frac{\partial S_i}{\partial k} \]

- For \(S_i \) we can insert our previous definition of \(NVE' \), approximating the clustering coefficient to yield

\[S_k = \frac{k^2}{4m^2t^2} \log \left(\frac{2mt}{k} \right) \]
We derive the final form of the degree evolution partial differential equation to be

\[\frac{\partial k}{\partial t} = 2m \Pi_i = -\epsilon \frac{k}{t} \left\{ \frac{1}{2} + \log \left(\frac{k}{2mt} \right) \right\} \]

Which as \(k \ll 2mt \) we can expand the logarithm to obtain

\[\frac{\partial k}{\partial t} \approx \frac{\epsilon k}{2t} - \frac{\epsilon k^2}{2mt} + \epsilon O \left(\frac{k}{2mt} \right)^2 \]
• Taylor series expansion has preferential attachment and constraints as the first two terms!
• Higher terms may reveal even more complex corrections to scale freedom
• The constant ϵ explains why γ is never exactly 3 even at low k
• The model has been arrived at from fundamental principles and could explain why nodes preferentially attach
Conclusions
Conclusions

- Vertex entropy, NVE' is useful at eliminating noisy events
- The constraints model more accurately matches real network metrics
- Vertex entropy can be used to build an entropic model of network growth.
- This model has constraints emerging naturally and explains why γ is never exactly 3
I would like to thank my colleagues at Moogsoft and our customers who gave us their time and data. I would also like to thank Ian and George for the continual help, suggestions, and support in developing these ideas. Finally, I would like to thank Christine for her debate, encouragement, and editorial services given freely!

