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Real-world complex networks

» Network models of real-world complex systems (biological, social,
technological, ...)

» Successful approach
> simple & versatile
» reveals structural and dynamical properties
» common properties/principles e.g. symmetry
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Network symmetry

» Network symmetries identify structurally equivalent nodes (and links)

» Mathematically, network symmetries are graph automorphisms:
permutations of the vertices (nodes) o: V — V preserving adjacency

(i,)) € E < (o(i),0(j)) €E VijeV

(Here G = (V, E) graph with vertex set V' and edge set E C V x V)

» They form a group Aut(G)

» They reflect structural redundancies on the underlying system, thus
relate to system robustness

» They may arise from replicative growth processes, evolution from
basic principles or functional optimisation
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Are real-world networks symmetric?

» Large automorphism group (10%%7 to 10197:552 in our test networks)
» Generated at small subgraphs (symmetric motifs) made of orbits of
structurally equivalent nodes

|Aut(G)| = 4,608 but 11 generating permutations

» Typical symmetric motif (>90%): orbits of same size with every
permutation in each orbit realised — basic symmetric motifs (BSMs)
» Non-basic symmetric motifs typically branched trees

[MacArthur, Sanchez-Garcia, Anderson Symmetry in Complex Networks Discrete
Appl. Math. (2008)]
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Redundant spectrum

» Symmetry explains most of the discrete part of the spectrum
(‘peaks’ in the spectral density) of the adjacency matrix
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» The redundant spectrum is generated at the symmetric motifs
(localised eigenvectors)

» Most symmetric motifs are basic and we can predict their
contribution to the discrete spectrum e.g.

RSpecl = {_170} RSpec2 = {_27 2 _170a<)0 - 1a 1}

[MacArthur, Sanchez-Garcia Spectral characteristics of network redundancy
Phys. Rev. E (2009)]
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Graph automorphisms

» Let G = (V, E) be a graph with adjacency matrix A = (aj;).
» A graph automorphisms is a permutation of the vertices (nodes)
o: V — V preserving adjacency

(i,j) € E < (a(i),0(j)) € E Vi,jeVv
AP = PA

where P is the permutation matrix representing o ([P]; =1 if
o(i) = j and 0 otherwise).

» |In particular, automorphisms generate high-multiplicity eigenvalues:
Av = Av implies APv = PAv = APv.
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Network measures

Crucial observation

Network symmetries are inherited by any measure on the network that
depends on structure alone

» A pairwise network measure F: V x V — R is structural if
F(i,j) = F(o(i),0())) for all o € Aut(G) and all i,j € V.
(That is, F depends on the network combinatorial structure alone.)
» Examples: network metrics (e.g. shortest path, resistance), matrices
derived from the adjacency matrix (e.g. graph Laplacian)
(We identify pairwise functions F with matrices [M]; = F(i,))

Note Our results can be adapted to the presence of vertex/edge labels
by restricting to automorphism preserving the additional structure
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Network representation of a network measure

» Any n x n real matrix A = (aj;) is the adjacency matrix of a
weighted graph: edge (i, /) weighted aj # 0, no such edge if a;; = 0.
» Hence we can encode a network measure F on G as a graph F(G)
with adjacency matrix [F(A)]; = F(i, ).
» This is (typically) an all-to-all weighted network on the same vertex
set. However, F(G) inherits all the symmetries of G
F(i,j) = F(o(i),0())) Vi,jeV < F(AP = PF(A)
(o € Aut(G), P permutation matrix representing o)
» In particular, F(G) has the same symmetric motifs and orbits as G.
» This can be exploited in practice, for an arbitrary F,

> quantify & eliminate redundancies (compression) up to 74%
» computational reduction up to 89%
> spectral signatures of symmetry in F(A) redundant eigenvalues

[Sanchez-Garcia Exploiting symmetries in network analysis arxiv preprint 1803.06915]



Full and sparse network measures

Our results apply to arbitrary network measures, however some will be
more useful for either full or sparse measures.

full measure F(i,j) # 0 for most i,j € V (e.g. graph metric)

sparse measure F(i,j) =0 if aj =0 for most i,j € V (e.g. graph
Laplacian)
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Network quotient

» Formal procedure to eliminate redundancies/symmetries.

» Let G = (V, E) with n x n adjacency matrix A = (a;;) and orbit
partition V= Vi U...U V,,.

» The quotient graph Q is the graph with adjacency matrix
Q(A) = (bu) given by by = 177 ey, jev, 2 (average connectivity
from a vertex in Vj to vertices in V).

» Matrix equation: Q(A) = A"1STAS where S is the n x m
characteristic matrix of the partition ([S]ix =1 if i € Vi) and
A =diag(n, ..., nm), nk = | Vil

» The graph Q is directed, weighted with loops, but spectrally
equivalent to an undirected graph, if G undirected too.

i yan

(Left) Toy network (Right) Quotient skeleton (no loops, edge directions or weights)
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Internal and external edges

Internal edges between vertices in the same symmetric motif
External edges between vertices in different symmetric motifs

(fixed points treated as trivial symmetric motifs of size 1)

» The vast majority of edges in F(G) are external (typically over 90%
in the sparse, and 99.99% in the full, case)
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» We can use the quotient to eliminate the symmetry-induced
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Symmetry compression

» F(G) inherits all the symmetries of G as redundancies, namely
repeated values F(o(i),o(j)) = F(i,J).
» We can use the quotient to eliminate the symmetry-induced

redundancies.

» Compression ratios between mg/mg (sparse) and (ng/ng)” (full).

Name

Table 2. Symmetry in some real-world networks.

ng mg gen t1 to sm  bsm muv ng
HumanDisease 1,419 2,738 713 0.00 0.16 272 96.0 71.0 483
Yeast 1,647 2,736 380 0.00 0.01 149 993 333 76.3
OpenFlights 3,397 19,230 732 0.00 0.11 321 935 324 773
USPowerGrid 4,941 6,594 414 0.00 0.09 302 974 167 90.2
HumanPPI 9,270 36,918 972 0.00 0.12 437 100 153 895
Astro-Ph 17,903 196,972 3,232 0.01 0.21 1,682 994 275 819
InternetAS 34,761 107,720 15,587 0.03 0.29 3,189 999 543 550
WordNet 145,145 656,230 52,152  0.18 0.62 28,456 92.0 60.0 60.1
Amazon 334,863 925,872 32,098 0.20 0.39 23,302 99.8 16.8 90.3
Actors 374,511 15,014,839 182,803 0.95 1.38 36,703 99.9 586 51.2
InternetAS-skitter 1,694,616 11,094,209 319,738 1.71 4.17 84,675 99.1 19.7 854
CaliforniaRoads 1,957,027 2,760,388 36,430 0.47 0.16 35210 98.8 40 979
LiveJournal 5,189,808 48,687,945 410,575 8.02 359 245211 999 127 921
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Symmetry compression

» F(G) inherits all the symmetries of G as redundancies, namely

repeated values F(o(i),o(j)) = F(i,J).

» We can use the quotient to eliminate the symmetry-induced
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Symmetry compression

» F(G) inherits all the symmetries of G as redundancies, namely
repeated values F(o(i),o(j)) = F(i,J)).
» We can use the quotient to eliminate the symmetry-induced

redundancies.

» Compression ratios between mg/mg (sparse) and (ng/ng)” (full).

» A simple compression/decompression algorithm recovers external
edges plus averaged internal edges (average compression)

» Annotating the quotient, we can achieve lossless compression with
a (not so simple) algorithm

» Pseudocode in the paper, and MATLAB code available in Bitbucket

12
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Computational reduction

» (Orbit reduction) F(i, ) = F(o(i),o(j)) means we only need to
evaluate F on mg < mg (sparse) or n3 < n (full) vertex pairs
— still each value F(/,) computed on the whole network

» (Quotient reduction) Perform computation on the quotient instead.
We call F quotient recoverable if F(G) can be obtained from F(Q).

» In practice we find different ‘degrees’ of recoverability: we call F
partially/ average/ fully quotient recoverable if the external/external
& averaged internal/external & internal edges of F(G) can be
obtained from F(Q)
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Computational reduction

» (Orbit reduction) F(i, ) = F(o(i),o(j)) means we only need to
evaluate F on mg < mg (sparse) or n% < n% (full) vertex pairs
— still each value F(/,;) computed on the whole network

» (Quotient reduction) Perform computation on the quotient instead.
We call F quotient recoverable if F(G) can be obtained from F(Q).
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Redundant spectrum

For any (undirected, possibly weighted) network with symmetries (such

as F(G)), we have:

» (A, v) quotient eigenpair then (A, Sv) parent eigenpair (Sv means

repeating values on orbits)
> the remaining eigenpairs are of the form (A, w), where (A, w) is an
eigenpair of a symmetric motif M, and w equals on (the vertices of)
M and 0 elsewhere (localised eigenvector)
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Redundant spectrum

» Moreover, we can predict the most significant redundant eigenvalues
from the structure of the BSMs with up to few orbits:
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Redundant spectrum

» Moreover, we can predict the most significant redundant eigenvalues
from the structure of the BSMs with up to few orbits:

Table 1: Redundant spectra of BSMs with one or two orbits

BSM eigenvalues mult eigenvectors

one orbit —a+f n—1 e;

—b—ch n—1 (nle;\e,-)
—b—rac n—-1 (kzei|e)

two orbits

where k1 and Ky are the two solutions of the quadratic equation

ck?+ (—a+b)k —c =0, and a, b, c,a, 3 depends on F evaluated
on the BSM

» Example: for the graph Laplacian and 1-orbit BSMs, we obtain Z*
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Spectral reconstruction algorithm

» We can compute the full eigendecomposition of A, or F(A) for any
measure F, from the eigendecomposition of the quotient matrix, and
the symmetric motifs
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Spectral reconstruction algorithm

» We can compute the full eigendecomposition of A, or F(A) for any
measure F, from the eigendecomposition of the quotient matrix, and
the symmetric motifs

» Computational reduction up to (ng/ng)3

100% |- E
90 % b
80% ¢y @ ¢

70% 8 B B

60 % |- g

50% -0 m A A

40% |- e

30% - © o T X d

20% |- IS e

10% - O E
0 % Il ’\\ Il Il

e\‘eﬁ\&\ co&&& \«z«‘e\%&(\ 6‘%@0& c}o%z‘@%% v@o&e «

O HumanDisease A Yeast [J OpenFlights = USPowerGrid O HumanPPI
O Astro-Ph A InternetAS [] WordNet ¢ Amazon O Actors

00D
Il

Computational reduction

16



Implementation

17



Implementation

» Calculating Aut(G) is computationally hard in general, but extremely
fast in practice for the large but sparse networks typically found in
applications

17



Implementation

» Calculating Aut(G) is computationally hard in general, but extremely
fast in practice for the large but sparse networks typically found in

applications

Step 1 We used saucy to compute generators for Aut(G)
(tmax = 8.02s for ng = 5 x 10°)

17



Implementation

» Calculating Aut(G) is computationally hard in general, but extremely
fast in practice for the large but sparse networks typically found in
applications

Step 1 We used saucy to compute generators for Aut(G)
(tmax = 8.02s for ng = 5 x 10°)

Step 2 Symmetric motifs can be obtained from a disjoint-support
decomposition of the generators in linear time
(tmax = 4.17s in our test networks)

17



Implementation

Step 1

Step 2

Step 3

Calculating Aut(G) is computationally hard in general, but extremely
fast in practice for the large but sparse networks typically found in
applications

We used saucy to compute generators for Aut(G)
(tmax = 8.02s for ng = 5 x 10°)

Symmetric motifs can be obtained from a disjoint-support
decomposition of the generators in linear time
(tmax = 4.17s in our test networks)

We used GAP* to obtain orbits and type of each symmetric motif
(tmax = large™ but parallelizable)

17



Implementation

» Calculating Aut(G) is computationally hard in general, but extremely
fast in practice for the large but sparse networks typically found in
applications

Step 1 We used saucy to compute generators for Aut(G)
(tmax = 8.02s for ng =5 x 10°)

Step 2 Symmetric motifs can be obtained from a disjoint-support
decomposition of the generators in linear time

(tmax = 4.17s in our test networks)

Step 3 We used GAP* to obtain orbits and type of each symmetric motif
(tmax = large™ but parallelizable)

» Code available in BitBucket
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Applications (examples)

» We studied symmetry compression, computational reduction, and
the redundant spectrum of several well-known network measures:
» communicability (f(A) = >°°; akA¥)
> shortest path distance
> resistance metric (equivalent to L")
» adjacency matrix (supersedes [MSA08] and [MS09])
» graph Laplacian

Full details in the preprint Sanchez-Garcia Exploiting symmetries in
network analysis arxiv/1803.06915
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Vertex measures

» Many important network measures are vertex-based (e.g. centrality)

» A structural vertex measure G: V — R satisfies
G(i) = G(a(i)) foralli€ V and o € Aut(G)

(that is, it is constant on orbits).

v

Enough to compute/store G once per orbit

v

Quotient reduction often holds (e.g. degree, eccentricity, closeness
and eigenvector centrality)

v

Often vertex measures arise from pairwise measures

e.g. G(i)= F(i,i)or G(i) = %ZJ F(i,J).
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Conclusions

For arbitrary (pairwise) structural network measures we have shown:

» a general framework to describe, manipulate and quantify the
inherited symmetry and redundancy on an arbitrary network measure

» symmetry compression algorithms with average or lossless
compression

» how to use the quotient network for computational reduction
> the contribution of symmetry to the discrete part of the spectrum

» how to extend the results on compression and computational
reduction to arbitrary vertex-based measures

» illustrated our methods in several pairwise and vertex-based
measures in empirical networks up to several million nodes
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