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A brief introduction. . .

I background in pure mathematics (algebraic topology)

I past & current projects in networks:

I cascading failures in power grid (spectral clustering)
I Morse-theoretic clustering of annotated network data [asthma

phenotypes]
I information-theoretic network data integration [‘omics cancer data]
I network symmetry. . .
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Figure 2: Morse-clustering of the TDA network of UBIOPRED gene expression profiling of 
peripheral blood 

 

Figure 2. TDA network landscape of correlated gene expression (54,613 probesets, n = 498). Metric: 
norm correlation. Lenses: neighbourhood lens 1 (resolution, 100 bins; gain, ×6), neighbourhood lens 2 
(resolution, 100 bins; gain, ×6) (A). The vector (node value) is a 3rd dimension in TDA networks, in a 
standard heatmap colouring of a TDA network, the colour represents the 3rd dimension (B). Arrows 
indicate the gradients of the 3-dimensional topology measured by Morse-based clustering identifying 
the ‘peaks’ as clusters of subjects with similar profiles of analysed variables.  

 

 

5 

 

Figure 2: Morse-clustering of the TDA network of UBIOPRED gene expression profiling of 
peripheral blood 

 

Figure 2. TDA network landscape of correlated gene expression (54,613 probesets, n = 498). Metric: 
norm correlation. Lenses: neighbourhood lens 1 (resolution, 100 bins; gain, ×6), neighbourhood lens 2 
(resolution, 100 bins; gain, ×6) (A). The vector (node value) is a 3rd dimension in TDA networks, in a 
standard heatmap colouring of a TDA network, the colour represents the 3rd dimension (B). Arrows 
indicate the gradients of the 3-dimensional topology measured by Morse-based clustering identifying 
the ‘peaks’ as clusters of subjects with similar profiles of analysed variables.  

 

 

1



A brief introduction. . .

I background in pure mathematics (algebraic topology)
I past & current projects in networks:

I cascading failures in power grid (spectral clustering)
I Morse-theoretic clustering of annotated network data [asthma

phenotypes]
I information-theoretic network data integration [‘omics cancer data]

I network symmetry. . .

66 Chapter 6 Validation and Results

Figure 6.3: A visualisation of the networks embedded in R2 using MDS and thep
JSN to give the distances. The points labeled 1, 2 and 3 are the input networks

shown in Figure 6.1; the point labeled ‘A’ is the average of the input networks; the
remaining points are the complete history of theta coloured with respect to the cost at
that time. Note that the ENF converges to the approximate barycenter of the triangle

(the point equidistant to 1, 2 and 3), as expected.

Figure 6.4: A visualisation of the resulting networks obtained from SNF and ENF.
Note that the diagonal was removed from both of these to improve the resolution for

the SNF solution.

Chapter 6 Validation and Results 69

Figure 6.5: Tables 6.5 - 6.8 showed the values for CI, NVI and NID for a fixed number
of clusters, five. Here we show the average values for these quantities for a range of

clusters, two to six.

Figure 6.6: Kaplan-Meier survival curves for each of the five groups identified from
the results of ENF applied to the Breast cancer data. Contains 5 cluster: Red - 19
patients; Blue - 24 patients; Green - 19 patients; Yellow - 24 patients; Orange - 19

patients.
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Real-world complex networks

I Network models of real-world complex systems (biological, social,

technological, . . . )

I Successful approach

I simple & versatile
I reveals structural and dynamical properties
I common properties/principles e.g. symmetry
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Network symmetry

I Network symmetries identify structurally equivalent nodes (and links)

I Mathematically, network symmetries are graph automorphisms:

permutations of the vertices (nodes) σ : V → V preserving adjacency

(i , j) ∈ E ⇐⇒ (σ(i), σ(j)) ∈ E ∀i , j ∈ V

(Here G = (V ,E ) graph with vertex set V and edge set E ⊆ V ×V )

I They form a group Aut(G)

I They reflect structural redundancies on the underlying system, thus

relate to system robustness

I They may arise from replicative growth processes, evolution from

basic principles or functional optimisation
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Are real-world networks symmetric?

I Large automorphism group (10407 to 10197,552 in our test networks)
I Generated at small subgraphs (symmetric motifs) made of orbits of

structurally equivalent nodes

|Aut(G)| = 4,608 but 11 generating permutations

I Typical symmetric motif (>90%): orbits of same size with every

permutation in each orbit realised — basic symmetric motifs (BSMs)
I Non-basic symmetric motifs typically branched trees

[MacArthur, Sanchez-Garcia, Anderson Symmetry in Complex Networks Discrete

Appl. Math. (2008)]
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Redundant spectrum

I Symmetry explains most of the discrete part of the spectrum

(‘peaks’ in the spectral density) of the adjacency matrix

I The redundant spectrum is generated at the symmetric motifs

(localised eigenvectors)

I Most symmetric motifs are basic and we can predict their

contribution to the discrete spectrum e.g.

RSpec1 = {−1, 0} RSpec2 = {−2,−ϕ,−1, 0, ϕ− 1, 1}

[MacArthur, Sanchez-Garcia Spectral characteristics of network redundancy

Phys. Rev. E (2009)]
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Graph automorphisms

I Let G = (V ,E ) be a graph with adjacency matrix A = (aij).

I A graph automorphisms is a permutation of the vertices (nodes)

σ : V → V preserving adjacency

(i , j) ∈ E ⇐⇒ (σ(i), σ(j)) ∈ E ∀i , j ∈ V

AP = PA

where P is the permutation matrix representing σ ([P]ij = 1 if

σ(i) = j and 0 otherwise).

I In particular, automorphisms generate high-multiplicity eigenvalues:

Av = λv implies APv = PAv = λPv .
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Network measures

Crucial observation

Network symmetries are inherited by any measure on the network that

depends on structure alone

I A pairwise network measure F : V × V → R is structural if

F (i , j) = F (σ(i), σ(j)) for all σ ∈ Aut(G) and all i , j ∈ V .

(That is, F depends on the network combinatorial structure alone.)

I Examples: network metrics (e.g. shortest path, resistance), matrices

derived from the adjacency matrix (e.g. graph Laplacian)

(We identify pairwise functions F with matrices [M]ij = F (i , j))

Note Our results can be adapted to the presence of vertex/edge labels

by restricting to automorphism preserving the additional structure
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Network representation of a network measure

I Any n × n real matrix A = (aij) is the adjacency matrix of a

weighted graph: edge (i , j) weighted aij 6= 0, no such edge if aij = 0.

I Hence we can encode a network measure F on G as a graph F (G)

with adjacency matrix [F (A)]ij = F (i , j).

I This is (typically) an all-to-all weighted network on the same vertex

set. However, F (G) inherits all the symmetries of G
F (i , j) = F (σ(i), σ(j)) ∀i , j ∈ V ⇐⇒ F (A)P = PF (A)

(σ ∈ Aut(G), P permutation matrix representing σ)

I In particular, F (G) has the same symmetric motifs and orbits as G.

I This can be exploited in practice, for an arbitrary F ,

I quantify & eliminate redundancies (compression) up to 74%
I computational reduction up to 89%
I spectral signatures of symmetry in F (A) redundant eigenvalues

[Sanchez-Garcia Exploiting symmetries in network analysis arxiv preprint 1803.06915]
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Full and sparse network measures

Our results apply to arbitrary network measures, however some will be

more useful for either full or sparse measures.

full measure F (i , j) 6= 0 for most i , j ∈ V (e.g. graph metric)

sparse measure F (i , j) = 0 if aij = 0 for most i , j ∈ V (e.g. graph

Laplacian)

9



Network quotient

I Formal procedure to eliminate redundancies/symmetries.

I Let G = (V ,E ) with n × n adjacency matrix A = (aij) and orbit

partition V = V1 ∪ . . . ∪ Vm.
I The quotient graph Q is the graph with adjacency matrix

Q(A) = (bkl) given by bkl = 1
|Vk |

∑
i∈Vk ,j∈Vl

aij (average connectivity

from a vertex in Vk to vertices in Vl).
I Matrix equation: Q(A) = Λ−1STAS where S is the n ×m

characteristic matrix of the partition ([S ]ik = 1 if i ∈ Vk) and

Λ = diag(n1, . . . , nm), nk = |Vk |.
I The graph Q is directed, weighted with loops, but spectrally

equivalent to an undirected graph, if G undirected too.

(Left) Toy network (Right) Quotient skeleton (no loops, edge directions or weights)
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Internal and external edges

Internal edges between vertices in the same symmetric motif

External edges between vertices in different symmetric motifs

(fixed points treated as trivial symmetric motifs of size 1)

I The vast majority of edges in F (G) are external (typically over 90%

in the sparse, and 99.99% in the full, case)
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Symmetry compression

I F (G) inherits all the symmetries of G as redundancies, namely

repeated values F (σ(i), σ(j)) = F (i , j).

I We can use the quotient to eliminate the symmetry-induced

redundancies.

I Compression ratios between mQ/mG (sparse) and (nQ/nG)2 (full).
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DRAFT

Table 2. Symmetry in some real-world networks.

Name nG mG gen t1 t2 sm bsm mv ñQ m̃Q exts intf cfull sp

HumanDisease 1,419 2,738 713 0.00 0.16 272 96.0 71.0 48.3 50.4 83.3 10≠3 27.2 11.3
Yeast 1,647 2,736 380 0.00 0.01 149 99.3 33.3 76.3 83.5 98.8 10≠3 58.4 44.4
OpenFlights 3,397 19,230 732 0.00 0.11 321 93.5 32.4 77.3 94.4 99.3 10≠3 63.5 46.2
USPowerGrid 4,941 6,594 414 0.00 0.09 302 97.4 16.7 90.2 91.3 97.6 10≠4 83.9 73.3
HumanPPI 9,270 36,918 972 0.00 0.12 437 100 15.3 89.5 97.0 99.9 10≠4 80.1 71.6
Astro-Ph 17,903 196,972 3,232 0.01 0.21 1,682 99.4 27.5 81.9 80.4 95.5 10≠4 67.4 54.9
InternetAS 34,761 107,720 15,587 0.03 0.29 3,189 99.9 54.3 55.0 78.2 99.9 10≠5 30.3 16.7
WordNet 145,145 656,230 52,152 0.18 0.62 28,456 92.0 60.0 60.1 58.0 89.9 10≠5 49.3 21.6
Amazon 334,863 925,872 32,098 0.20 0.39 23,302 99.8 16.8 90.3 89.0 99.0 10≠6 81.6 73.6
Actors 374,511 15,014,839 182,803 0.95 1.38 36,703 99.9 58.6 51.2 66.4 90.4 10≠5 26.2 13.4
InternetAS-skitter 1,694,616 11,094,209 319,738 1.71 4.17 84,675 99.1 19.7 85.4 92.8 99.9 10≠6 73.5 62.3
CaliforniaRoads 1,957,027 2,760,388 36,430 0.47 0.16 35,210 98.8 4.0 97.9 98.4 99.7 10≠7 96.3 93.9
LiveJournal 5,189,808 48,687,945 410,575 8.02 3.59 245,211 99.9 12.7 92.1 96.5 99.7 10≠7 84.8 78.0

Number of vertices (nG), edges (mG), number of generators (gen) of the automorphism group (sizes, 10153 to 10197,552, not shown), computing
times of generators (t1) and geometric decomposition (t2), in seconds, number of symmetric motifs (sm) and proportion of BSMs (bsm), proportion
of vertices moved by an automorphism (mv), proportion of vertices (ñQ = nQ/n) and edges (m̃Q = mQ/m) in the quotient, proportion of external
edges in the sparse case (exts, in percentage), and of internal edges in the full case (intf , closest power of 10), full compression ratio (cfull = ñ2

Q),
and spectral computational reduction (sp = ñ3

Q), all for the largest connected component. Datasets available at (23), except HumanDisease (24),
Yeast (25), and HumanPPI (26). Computations on a desktop computer (3.2 GHz Intel Core i5 processor, 16 GB 1.6 GHz DDR3 memory). All
networks are symmetric, although the amount of symmetry (as measured by mv or ñQ) ranges from several networks with 50% quotient reduction,
to CalifornialRoads with only 4% of vertices participating in any symmetry. However, the e�ect of compression and computational reduction
multiplies as e.g. cfull = ñ2

Q and sp = ñ3
Q, achieving significant results for most of our test networks.

the redundant spectrum of BSMs with up to a few orbits
(Table 1), explaining most of the contribution of the network
symmetry to the discrete part of the spectrum of F (G) (SI).
This extends the results in (11) to arbitrary network measures
such as the graph Laplacian (see Applications).

In addition, the spectral decomposition leads to a spectral
reconstruction algorithm: the spectrum and eigenbasis of a
network (equivalently, a diagonalisation A = UDUT ) can be
obtained from those of the quotient, and the redundant ones of
the symmetric motifs, reducing the computational time (cubic
on the number of vertices) up to a third in our test networks
(Fig. 4), in line with our predictions (sp in Table 2).

Applications

We illustrate our methods on several popular pairwise network
measures and discuss applicability to vertex-based measures.

Implementation. Constructing the automorphism group of a
graph is computationally hard in general (27). However, for the
large but sparse graphs typically found in applications, current
graph automorphism algorithms, such as the one we used,
saucy, can be extremely fast (28), and in practice we obtained
generators of the automorphism group a few seconds for all
our test networks (Table 2). The geometric decomposition
can be found in linear time, and for the orbits and their type
we used GAP (29). The remaining numerical results were
performed in MATLAB. Computer code is available at (30)
and pseudocode, and further details, in the SI.

Adjacency matrix. The methods in this paper can be applied
to the network itself, that is, to its adjacency matrix seen
as a sparse network measure. We recover the structural and
spectral results in (10, 11), and the quotient compression ratio
reported in (15), csparse = m̃Q in Table 2. Moreover, the

network (adjacency) spectral decomposition calculation can
be significantly reduced by exploiting symmetries (Fig. 4).

Communicability. Communicability is a very general choice
of structural measure, consisting on any analytical function
f(x) =

q
anx

n applied to the adjacency matrix,

f(A) =
Œÿ

n=0

anA
n, [9]

and it is a natural measure of network connectivity, since the
matrix power Ak counts walks of length k (31).

Communicability is a structural network measure (if P
commutes with A, see Eq. (1), then it also does with f(A),
by Eq. (9)), and its network representation, the graph f(G)
with adjacency matrix f(A), inherits all the symmetries of G
and thus it has the same geometric decomposition, symmetric
motifs, and orbits. The BSMs are uniform joins of orbits, and
each orbit is a uniform graph (Fig. 2) characterised by the
communicability of a vertex to itself (a natural measure of
centrality (32)), and the communicability between distinct
vertices. As a full network measure, the compression ratio cfull
applies (Table 2), indicating the fraction of storage needed by
using the quotient to eliminate redundancies (Fig. 3). More-
over, we can recover the communicability of a network from its
(annotated, basic) quotient, or by using the spectral decompo-
sition algorithm on the adjacency matrix (A = UDUT implies
f(A) = Uf(D)UT ) reducing the computation, typically cubic
on the number of vertices, by sp = ñ3

Q (Table 2, Fig. 4).

Shortest path distance. This is the simplest metric on a (con-
nected) network, namely the length of a shortest path between
vertices. As a full structural measure, the compression rate
cfull (Table 2) applies. Moreover, automorphisms ‡ preserve
the shortest path metric, d(i, j) = d (‡(i),‡(j)), and indeed

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Sánchez-García
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I Annotating the quotient, we can achieve lossless compression with

a (not so simple) algorithm
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I A simple compression/decompression algorithm recovers external

edges plus averaged internal edges (average compression)

I Annotating the quotient, we can achieve lossless compression with

a (not so simple) algorithm

I Pseudocode in the paper, and Matlab code available in Bitbucket
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Computational reduction

I (Orbit reduction) F (i , j) = F (σ(i), σ(j)) means we only need to

evaluate F on mQ < mG (sparse) or n2Q � n2G (full) vertex pairs

— still each value F (i , j) computed on the whole network

I (Quotient reduction) Perform computation on the quotient instead.

We call F quotient recoverable if F (G) can be obtained from F (Q).
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— still each value F (i , j) computed on the whole network

I (Quotient reduction) Perform computation on the quotient instead.

We call F quotient recoverable if F (G) can be obtained from F (Q).

I In practice we find different ‘degrees’ of recoverability: we call F

partially/average/fully quotient recoverable if the external/external

& averaged internal/external & internal edges of F (G) can be

obtained from F (Q)
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Fig. 3. Symmetry lossless compression ratios of our test networks (Table 2) obtained
by eliminating the inherited redundancy in an arbitrary full network measure. The
predicted values, cfull = ñ2

Qbasic
, coincide (up to 0.01%) with the actual lossless

compression ratios of the shortest path distance, and communicability (exponential
matrix), for our smallest seven networks (memory limit in our computer). After decom-
pression, we recover the original matrix exactly for the shortest path distance, and up
to a small numerical error (1.16 ◊ 10≠4 mean relative error) for communicability.

shortest paths themselves (SI). As shortest paths cannot con-
tain intra-orbit edges (SI), we can compute shortest distances
from the quotient,

dG(–,—) = dQ(i, j), – œ Vi,— œ Vj , [10]

whenever Vi and Vj are orbits in di�erent symmetric motifs.
This accounts for all but the (small) intra-motif distances and
reduces the computation as shown in Fig. 4.

Laplacian matrix. The Laplacian matrix of a network L =
D ≠ A, where D is the diagonal matrix of vertex degrees, is a
sparse network measure and hence inherits all the symmetries
of the network. The symmetric motifs are identical to the
subgraphs in the network except edges are now weighted by
≠1, and self-loops by vertex degrees in the network, and hence
they depend on how the motif is embedded in the network.

Quotient compression and computational reduction are
less useful in this case, however the spectral results are more
interesting. Spectral decomposition and eigenvalue localisation
apply, and we can compute redundant Laplacian eigenvalues
directly from Table 1, for instance positive integers for BSMs
with one orbit (SI). This explains and predicts most of the
‘peaks’ (high multiplicity eigenvalues) in the Laplacian spectral
density, confirmed on our test networks (Fig. 5).

Commute distance and matrix inversion. The commute dis-
tance is the expected time for a random walker to travel
between two vertices and back (33). In contrast to the short-
est path distance, it is a global metric which takes into account
all possible paths between two vertices. The commute distance
is equal up to a constant (the volume of the network) to the
resistance metric r (34), which can be expressed in terms of
L† = (l†ij), the pseudoinverse (or Moore-Penrose inverse) of
the Laplacian, as r(i, j) = l†ii + l†jj ≠ 2l†ij .

The commute (or resistance) distance is a (full) structural
measure, and all our structural and spectral results apply.
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Fig. 4. Computational time reduction of several structural measures in some of our
test networks (Table 2) obtained by performing the calculation in the network quotient
versus the original network. The computations are: spectral decomposition of the
adjacency matrix A (spectral), exponential matrix exp(A) (commun), pseudoinverse
of the Laplacian matrix (laplacian), shortest path distance (distance), closeness
centrality (closeness), betweenness centrality (btwness) and eigenvector centrality
(eigc), using MATLAB built-in functions. For spectral, we also show (left column) the
reduction including the redundant motif spectrum calculation. In each case, median
computational reduction over at least 10 iterations shown.

Crucially, we can use spectral reconstruction to obtain L =
UDUT (and hence L† = UD†UT , and r) from the quotient and
symmetric motifs, as explained before, resulting in significant
computational gains (Fig. 4). More generally, if MF is the
matrix representation of a network measure, its pseudoinverse
M†

F is also a network measure, and the comments above apply.
Note that M†

F is generally a full measure even if MF is sparse.

Vertex measures and centrality. We have so far considered
network measures of the form F (i, j), where i and j are vertices.
However, many important network measurements are vertex
based, that is, of the form G(i) for each vertex i. We say that
a vertex measure G(i) is structural if it only depends on the
network structure and, in particular, it satisfies

G(i) = G(‡(i)) [11]

for each automorphism ‡ œ Aut(G), that is, it is constant on
orbits (Fig. 1).

Although for vertex measures we do not have a network rep-
resentation, we can still exploit the network symmetries. First,
G needs only to be computed/stored once per orbit, resulting
on a reduction/compression ratio of ñQ = nQ/nG (Table 2).
Secondly, when quotient recovery holds (that is, we can recover
G from its values on the quotient and symmetry information
alone), it amounts to a further computational reduction (see
below, and Fig. 4), depending on the computational complex-
ity of G. Finally, many vertex measures arise nevertheless
from a pairwise function, such as G(i) = F (i, i) (subgraph
centrality from communicability), or G(i) = 1

n2
q

i,j
F (i, j)

(closeness centrality from shortest path distance), allowing the
symmetry-induced results on F to carry over to G. Below we
illustrate the exploitation of symmetry on vertex measures on
several well-known centrality measures (details in the SI).

Sánchez-García PNAS | March 5, 2018 | vol. XXX | no. XX | 5
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Redundant spectrum

For any (undirected, possibly weighted) network with symmetries (such

as F (G)), we have:

I (λ, v) quotient eigenpair then (λ,Sv) parent eigenpair (Sv means

repeating values on orbits)
I the remaining eigenpairs are of the form (λ, w̃), where (λ,w) is an

eigenpair of a symmetric motif M, and w̃ equals on (the vertices of)

M and 0 elsewhere (localised eigenvector)
I Symmetry induces high-multiplicity eigenvalues, and, for empirical

networks, explains most of the discrete part of the spectrum
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Redundant spectrum

I Moreover, we can predict the most significant redundant eigenvalues

from the structure of the BSMs with up to few orbits:

Table 1: Redundant spectra of BSMs with one or two orbits

BSM eigenvalues mult eigenvectors

one orbit −α + β n − 1 ei

two orbits
−b − κ1c n − 1 (κ1ei | ei )
−b − κ2c n − 1 (κ2ei | ei )

where κ1 and κ2 are the two solutions of the quadratic equation

cκ2 + (−a + b)κ− c = 0, and a, b, c , α, β depends on F evaluated

on the BSM

I Example: for the graph Laplacian and 1-orbit BSMs, we obtain Z+
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Spectral reconstruction algorithm

I We can compute the full eigendecomposition of A, or F (A) for any

measure F , from the eigendecomposition of the quotient matrix, and

the symmetric motifs

I Computational reduction up to (nQ/nG)3
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Fig. 3. Symmetry lossless compression ratios of our test networks (Table 2) obtained
by eliminating the inherited redundancy in an arbitrary full network measure. The
predicted values, cfull = ñ2

Qbasic
, coincide (up to 0.01%) with the actual lossless

compression ratios of the shortest path distance, and communicability (exponential
matrix), for our smallest seven networks (memory limit in our computer). After decom-
pression, we recover the original matrix exactly for the shortest path distance, and up
to a small numerical error (1.16 ◊ 10≠4 mean relative error) for communicability.

shortest paths themselves (SI). As shortest paths cannot con-
tain intra-orbit edges (SI), we can compute shortest distances
from the quotient,

dG(–,—) = dQ(i, j), – œ Vi,— œ Vj , [10]

whenever Vi and Vj are orbits in di�erent symmetric motifs.
This accounts for all but the (small) intra-motif distances and
reduces the computation as shown in Fig. 4.

Laplacian matrix. The Laplacian matrix of a network L =
D ≠ A, where D is the diagonal matrix of vertex degrees, is a
sparse network measure and hence inherits all the symmetries
of the network. The symmetric motifs are identical to the
subgraphs in the network except edges are now weighted by
≠1, and self-loops by vertex degrees in the network, and hence
they depend on how the motif is embedded in the network.

Quotient compression and computational reduction are
less useful in this case, however the spectral results are more
interesting. Spectral decomposition and eigenvalue localisation
apply, and we can compute redundant Laplacian eigenvalues
directly from Table 1, for instance positive integers for BSMs
with one orbit (SI). This explains and predicts most of the
‘peaks’ (high multiplicity eigenvalues) in the Laplacian spectral
density, confirmed on our test networks (Fig. 5).

Commute distance and matrix inversion. The commute dis-
tance is the expected time for a random walker to travel
between two vertices and back (33). In contrast to the short-
est path distance, it is a global metric which takes into account
all possible paths between two vertices. The commute distance
is equal up to a constant (the volume of the network) to the
resistance metric r (34), which can be expressed in terms of
L† = (l†ij), the pseudoinverse (or Moore-Penrose inverse) of
the Laplacian, as r(i, j) = l†ii + l†jj ≠ 2l†ij .

The commute (or resistance) distance is a (full) structural
measure, and all our structural and spectral results apply.
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Fig. 4. Computational time reduction of several structural measures in some of our
test networks (Table 2) obtained by performing the calculation in the network quotient
versus the original network. The computations are: spectral decomposition of the
adjacency matrix A (spectral), exponential matrix exp(A) (commun), pseudoinverse
of the Laplacian matrix (laplacian), shortest path distance (distance), closeness
centrality (closeness), betweenness centrality (btwness) and eigenvector centrality
(eigc), using MATLAB built-in functions. For spectral, we also show (left column) the
reduction including the redundant motif spectrum calculation. In each case, median
computational reduction over at least 10 iterations shown.

Crucially, we can use spectral reconstruction to obtain L =
UDUT (and hence L† = UD†UT , and r) from the quotient and
symmetric motifs, as explained before, resulting in significant
computational gains (Fig. 4). More generally, if MF is the
matrix representation of a network measure, its pseudoinverse
M†

F is also a network measure, and the comments above apply.
Note that M†

F is generally a full measure even if MF is sparse.

Vertex measures and centrality. We have so far considered
network measures of the form F (i, j), where i and j are vertices.
However, many important network measurements are vertex
based, that is, of the form G(i) for each vertex i. We say that
a vertex measure G(i) is structural if it only depends on the
network structure and, in particular, it satisfies

G(i) = G(‡(i)) [11]

for each automorphism ‡ œ Aut(G), that is, it is constant on
orbits (Fig. 1).

Although for vertex measures we do not have a network rep-
resentation, we can still exploit the network symmetries. First,
G needs only to be computed/stored once per orbit, resulting
on a reduction/compression ratio of ñQ = nQ/nG (Table 2).
Secondly, when quotient recovery holds (that is, we can recover
G from its values on the quotient and symmetry information
alone), it amounts to a further computational reduction (see
below, and Fig. 4), depending on the computational complex-
ity of G. Finally, many vertex measures arise nevertheless
from a pairwise function, such as G(i) = F (i, i) (subgraph
centrality from communicability), or G(i) = 1

n2
q

i,j
F (i, j)

(closeness centrality from shortest path distance), allowing the
symmetry-induced results on F to carry over to G. Below we
illustrate the exploitation of symmetry on vertex measures on
several well-known centrality measures (details in the SI).
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Fig. 3. Symmetry lossless compression ratios of our test networks (Table 2) obtained
by eliminating the inherited redundancy in an arbitrary full network measure. The
predicted values, cfull = ñ2

Qbasic
, coincide (up to 0.01%) with the actual lossless

compression ratios of the shortest path distance, and communicability (exponential
matrix), for our smallest seven networks (memory limit in our computer). After decom-
pression, we recover the original matrix exactly for the shortest path distance, and up
to a small numerical error (1.16 ◊ 10≠4 mean relative error) for communicability.

shortest paths themselves (SI). As shortest paths cannot con-
tain intra-orbit edges (SI), we can compute shortest distances
from the quotient,

dG(–,—) = dQ(i, j), – œ Vi,— œ Vj , [10]

whenever Vi and Vj are orbits in di�erent symmetric motifs.
This accounts for all but the (small) intra-motif distances and
reduces the computation as shown in Fig. 4.

Laplacian matrix. The Laplacian matrix of a network L =
D ≠ A, where D is the diagonal matrix of vertex degrees, is a
sparse network measure and hence inherits all the symmetries
of the network. The symmetric motifs are identical to the
subgraphs in the network except edges are now weighted by
≠1, and self-loops by vertex degrees in the network, and hence
they depend on how the motif is embedded in the network.

Quotient compression and computational reduction are
less useful in this case, however the spectral results are more
interesting. Spectral decomposition and eigenvalue localisation
apply, and we can compute redundant Laplacian eigenvalues
directly from Table 1, for instance positive integers for BSMs
with one orbit (SI). This explains and predicts most of the
‘peaks’ (high multiplicity eigenvalues) in the Laplacian spectral
density, confirmed on our test networks (Fig. 5).

Commute distance and matrix inversion. The commute dis-
tance is the expected time for a random walker to travel
between two vertices and back (33). In contrast to the short-
est path distance, it is a global metric which takes into account
all possible paths between two vertices. The commute distance
is equal up to a constant (the volume of the network) to the
resistance metric r (34), which can be expressed in terms of
L† = (l†ij), the pseudoinverse (or Moore-Penrose inverse) of
the Laplacian, as r(i, j) = l†ii + l†jj ≠ 2l†ij .

The commute (or resistance) distance is a (full) structural
measure, and all our structural and spectral results apply.
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Fig. 4. Computational time reduction of several structural measures in some of our
test networks (Table 2) obtained by performing the calculation in the network quotient
versus the original network. The computations are: spectral decomposition of the
adjacency matrix A (spectral), exponential matrix exp(A) (commun), pseudoinverse
of the Laplacian matrix (laplacian), shortest path distance (distance), closeness
centrality (closeness), betweenness centrality (btwness) and eigenvector centrality
(eigc), using MATLAB built-in functions. For spectral, we also show (left column) the
reduction including the redundant motif spectrum calculation. In each case, median
computational reduction over at least 10 iterations shown.

Crucially, we can use spectral reconstruction to obtain L =
UDUT (and hence L† = UD†UT , and r) from the quotient and
symmetric motifs, as explained before, resulting in significant
computational gains (Fig. 4). More generally, if MF is the
matrix representation of a network measure, its pseudoinverse
M†

F is also a network measure, and the comments above apply.
Note that M†

F is generally a full measure even if MF is sparse.

Vertex measures and centrality. We have so far considered
network measures of the form F (i, j), where i and j are vertices.
However, many important network measurements are vertex
based, that is, of the form G(i) for each vertex i. We say that
a vertex measure G(i) is structural if it only depends on the
network structure and, in particular, it satisfies

G(i) = G(‡(i)) [11]

for each automorphism ‡ œ Aut(G), that is, it is constant on
orbits (Fig. 1).

Although for vertex measures we do not have a network rep-
resentation, we can still exploit the network symmetries. First,
G needs only to be computed/stored once per orbit, resulting
on a reduction/compression ratio of ñQ = nQ/nG (Table 2).
Secondly, when quotient recovery holds (that is, we can recover
G from its values on the quotient and symmetry information
alone), it amounts to a further computational reduction (see
below, and Fig. 4), depending on the computational complex-
ity of G. Finally, many vertex measures arise nevertheless
from a pairwise function, such as G(i) = F (i, i) (subgraph
centrality from communicability), or G(i) = 1

n2
q

i,j
F (i, j)

(closeness centrality from shortest path distance), allowing the
symmetry-induced results on F to carry over to G. Below we
illustrate the exploitation of symmetry on vertex measures on
several well-known centrality measures (details in the SI).
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Qbasic
, coincide (up to 0.01%) with the actual lossless

compression ratios of the shortest path distance, and communicability (exponential
matrix), for our smallest seven networks (memory limit in our computer). After decom-
pression, we recover the original matrix exactly for the shortest path distance, and up
to a small numerical error (1.16 ◊ 10≠4 mean relative error) for communicability.

shortest paths themselves (SI). As shortest paths cannot con-
tain intra-orbit edges (SI), we can compute shortest distances
from the quotient,

dG(–,—) = dQ(i, j), – œ Vi,— œ Vj , [10]

whenever Vi and Vj are orbits in di�erent symmetric motifs.
This accounts for all but the (small) intra-motif distances and
reduces the computation as shown in Fig. 4.

Laplacian matrix. The Laplacian matrix of a network L =
D ≠ A, where D is the diagonal matrix of vertex degrees, is a
sparse network measure and hence inherits all the symmetries
of the network. The symmetric motifs are identical to the
subgraphs in the network except edges are now weighted by
≠1, and self-loops by vertex degrees in the network, and hence
they depend on how the motif is embedded in the network.

Quotient compression and computational reduction are
less useful in this case, however the spectral results are more
interesting. Spectral decomposition and eigenvalue localisation
apply, and we can compute redundant Laplacian eigenvalues
directly from Table 1, for instance positive integers for BSMs
with one orbit (SI). This explains and predicts most of the
‘peaks’ (high multiplicity eigenvalues) in the Laplacian spectral
density, confirmed on our test networks (Fig. 5).

Commute distance and matrix inversion. The commute dis-
tance is the expected time for a random walker to travel
between two vertices and back (33). In contrast to the short-
est path distance, it is a global metric which takes into account
all possible paths between two vertices. The commute distance
is equal up to a constant (the volume of the network) to the
resistance metric r (34), which can be expressed in terms of
L† = (l†ij), the pseudoinverse (or Moore-Penrose inverse) of
the Laplacian, as r(i, j) = l†ii + l†jj ≠ 2l†ij .

The commute (or resistance) distance is a (full) structural
measure, and all our structural and spectral results apply.
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Fig. 4. Computational time reduction of several structural measures in some of our
test networks (Table 2) obtained by performing the calculation in the network quotient
versus the original network. The computations are: spectral decomposition of the
adjacency matrix A (spectral), exponential matrix exp(A) (commun), pseudoinverse
of the Laplacian matrix (laplacian), shortest path distance (distance), closeness
centrality (closeness), betweenness centrality (btwness) and eigenvector centrality
(eigc), using MATLAB built-in functions. For spectral, we also show (left column) the
reduction including the redundant motif spectrum calculation. In each case, median
computational reduction over at least 10 iterations shown.

Crucially, we can use spectral reconstruction to obtain L =
UDUT (and hence L† = UD†UT , and r) from the quotient and
symmetric motifs, as explained before, resulting in significant
computational gains (Fig. 4). More generally, if MF is the
matrix representation of a network measure, its pseudoinverse
M†

F is also a network measure, and the comments above apply.
Note that M†

F is generally a full measure even if MF is sparse.

Vertex measures and centrality. We have so far considered
network measures of the form F (i, j), where i and j are vertices.
However, many important network measurements are vertex
based, that is, of the form G(i) for each vertex i. We say that
a vertex measure G(i) is structural if it only depends on the
network structure and, in particular, it satisfies

G(i) = G(‡(i)) [11]

for each automorphism ‡ œ Aut(G), that is, it is constant on
orbits (Fig. 1).

Although for vertex measures we do not have a network rep-
resentation, we can still exploit the network symmetries. First,
G needs only to be computed/stored once per orbit, resulting
on a reduction/compression ratio of ñQ = nQ/nG (Table 2).
Secondly, when quotient recovery holds (that is, we can recover
G from its values on the quotient and symmetry information
alone), it amounts to a further computational reduction (see
below, and Fig. 4), depending on the computational complex-
ity of G. Finally, many vertex measures arise nevertheless
from a pairwise function, such as G(i) = F (i, i) (subgraph
centrality from communicability), or G(i) = 1

n2
q

i,j
F (i, j)

(closeness centrality from shortest path distance), allowing the
symmetry-induced results on F to carry over to G. Below we
illustrate the exploitation of symmetry on vertex measures on
several well-known centrality measures (details in the SI).
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Implementation

I Calculating Aut(G) is computationally hard in general, but extremely

fast in practice for the large but sparse networks typically found in

applications

Step 1 We used saucy to compute generators for Aut(G)

(tmax = 8.02s for nG = 5× 106)

Step 2 Symmetric motifs can be obtained from a disjoint-support

decomposition of the generators in linear time

(tmax = 4.17s in our test networks)

Step 3 We used GAP∗ to obtain orbits and type of each symmetric motif

(tmax = large∗ but parallelizable)

I Code available in BitBucket
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Applications (examples)

I We studied symmetry compression, computational reduction, and

the redundant spectrum of several well-known network measures:

I communicability (f (A) =
∑∞

n=0 akA
k)

I shortest path distance
I resistance metric (equivalent to L†)
I adjacency matrix (supersedes [MSA08] and [MS09])
I graph Laplacian

Full details in the preprint Sanchez-Garcia Exploiting symmetries in

network analysis arxiv/1803.06915
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Vertex measures

I Many important network measures are vertex-based (e.g. centrality)

I A structural vertex measure G : V → R satisfies

G (i) = G (σ(i)) for all i ∈ V and σ ∈ Aut(G)

(that is, it is constant on orbits).

I Enough to compute/store G once per orbit

I Quotient reduction often holds (e.g. degree, eccentricity, closeness

and eigenvector centrality)
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Fig. 3. Symmetry lossless compression ratios of our test networks (Table 2) obtained
by eliminating the inherited redundancy in an arbitrary full network measure. The
predicted values, cfull = ñ2

Qbasic
, coincide (up to 0.01%) with the actual lossless

compression ratios of the shortest path distance, and communicability (exponential
matrix), for our smallest seven networks (memory limit in our computer). After decom-
pression, we recover the original matrix exactly for the shortest path distance, and up
to a small numerical error (1.16 ◊ 10≠4 mean relative error) for communicability.

shortest paths themselves (SI). As shortest paths cannot con-
tain intra-orbit edges (SI), we can compute shortest distances
from the quotient,

dG(–,—) = dQ(i, j), – œ Vi,— œ Vj , [10]

whenever Vi and Vj are orbits in di�erent symmetric motifs.
This accounts for all but the (small) intra-motif distances and
reduces the computation as shown in Fig. 4.

Laplacian matrix. The Laplacian matrix of a network L =
D ≠ A, where D is the diagonal matrix of vertex degrees, is a
sparse network measure and hence inherits all the symmetries
of the network. The symmetric motifs are identical to the
subgraphs in the network except edges are now weighted by
≠1, and self-loops by vertex degrees in the network, and hence
they depend on how the motif is embedded in the network.

Quotient compression and computational reduction are
less useful in this case, however the spectral results are more
interesting. Spectral decomposition and eigenvalue localisation
apply, and we can compute redundant Laplacian eigenvalues
directly from Table 1, for instance positive integers for BSMs
with one orbit (SI). This explains and predicts most of the
‘peaks’ (high multiplicity eigenvalues) in the Laplacian spectral
density, confirmed on our test networks (Fig. 5).

Commute distance and matrix inversion. The commute dis-
tance is the expected time for a random walker to travel
between two vertices and back (33). In contrast to the short-
est path distance, it is a global metric which takes into account
all possible paths between two vertices. The commute distance
is equal up to a constant (the volume of the network) to the
resistance metric r (34), which can be expressed in terms of
L† = (l†ij), the pseudoinverse (or Moore-Penrose inverse) of
the Laplacian, as r(i, j) = l†ii + l†jj ≠ 2l†ij .

The commute (or resistance) distance is a (full) structural
measure, and all our structural and spectral results apply.
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Fig. 4. Computational time reduction of several structural measures in some of our
test networks (Table 2) obtained by performing the calculation in the network quotient
versus the original network. The computations are: spectral decomposition of the
adjacency matrix A (spectral), exponential matrix exp(A) (commun), pseudoinverse
of the Laplacian matrix (laplacian), shortest path distance (distance), closeness
centrality (closeness), betweenness centrality (btwness) and eigenvector centrality
(eigc), using MATLAB built-in functions. For spectral, we also show (left column) the
reduction including the redundant motif spectrum calculation. In each case, median
computational reduction over at least 10 iterations shown.

Crucially, we can use spectral reconstruction to obtain L =
UDUT (and hence L† = UD†UT , and r) from the quotient and
symmetric motifs, as explained before, resulting in significant
computational gains (Fig. 4). More generally, if MF is the
matrix representation of a network measure, its pseudoinverse
M†

F is also a network measure, and the comments above apply.
Note that M†

F is generally a full measure even if MF is sparse.

Vertex measures and centrality. We have so far considered
network measures of the form F (i, j), where i and j are vertices.
However, many important network measurements are vertex
based, that is, of the form G(i) for each vertex i. We say that
a vertex measure G(i) is structural if it only depends on the
network structure and, in particular, it satisfies

G(i) = G(‡(i)) [11]

for each automorphism ‡ œ Aut(G), that is, it is constant on
orbits (Fig. 1).

Although for vertex measures we do not have a network rep-
resentation, we can still exploit the network symmetries. First,
G needs only to be computed/stored once per orbit, resulting
on a reduction/compression ratio of ñQ = nQ/nG (Table 2).
Secondly, when quotient recovery holds (that is, we can recover
G from its values on the quotient and symmetry information
alone), it amounts to a further computational reduction (see
below, and Fig. 4), depending on the computational complex-
ity of G. Finally, many vertex measures arise nevertheless
from a pairwise function, such as G(i) = F (i, i) (subgraph
centrality from communicability), or G(i) = 1

n2
q

i,j
F (i, j)

(closeness centrality from shortest path distance), allowing the
symmetry-induced results on F to carry over to G. Below we
illustrate the exploitation of symmetry on vertex measures on
several well-known centrality measures (details in the SI).
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Vertex measures

I Many important network measures are vertex-based (e.g. centrality)

I A structural vertex measure G : V → R satisfies

G (i) = G (σ(i)) for all i ∈ V and σ ∈ Aut(G)

(that is, it is constant on orbits).

I Enough to compute/store G once per orbit

I Quotient reduction often holds (e.g. degree, eccentricity, closeness

and eigenvector centrality)

I Often vertex measures arise from pairwise measures

e.g. G (i) = F (i , i) or G (i) = 1
n

∑
j F (i , j).
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Conclusions

For arbitrary (pairwise) structural network measures we have shown:

I a general framework to describe, manipulate and quantify the

inherited symmetry and redundancy on an arbitrary network measure

I symmetry compression algorithms with average or lossless

compression

I how to use the quotient network for computational reduction

I the contribution of symmetry to the discrete part of the spectrum

I how to extend the results on compression and computational

reduction to arbitrary vertex-based measures

I illustrated our methods in several pairwise and vertex-based

measures in empirical networks up to several million nodes
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