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Introduction: Network inference

What do we want to infer about Networks?

o Link-based inference: adjacency matrix?

e Topological parameters? (i.e. (k))

@ Some mesoscopic quantity related to the network structure
(comunities, clustering)?



Possibilities

How many ways do we have to infer networks?

The problem

1| Correlation (ie. cross-correlation, pearson correlation, a 21 |Rate of Information Flow
2_|Correlation + Minimal Spanning Tree 22_|Diroctdrected coherence
3| Partial correlation 23| Directdrected transferfoncion
4| Cross-Mutual Information 2 |Drectedcoherence
§__|Free Energy Minimization 25 | Directed transfer function
6 | Optimal Causation Entropy 26| Generalized partial directed coherence
7__|Transfer Entropy 27 | Partial directed coherence.
8 | Static Graphical Lasso 28 | Spectral Granger Causality
9 | Convergent Cross-Mapping 29| Cross-distance-correlation
10_|Random 30_| Cross-Jaccard-distance
11_|Localization in Covariance Matrices 31_| Derivative Variable Correlation
12_| Marchenko-Pastur 32| Higher-Order Network Analysis
13| Exact mean field 33_| Graphical Models
14| Maximum Likelihood Estimation 34| Mixed-integer Optimisation Approximation
15_| Naive Mean-Field |35 | Bayesian GLM for Structure Leaming
16 I mean field | 36 [UnearProgrammingModel
17 [TmoGrngorCavsaly | & ’ﬂm,evw_w_/
18 | Adaptive Granger Causality 38 _|integerProgramming
" 39 | Partial correlation influence
19 | Directed Information
20 | Joint Entropy of ISIs |

Figure: A lot, apparently [1]! (picture posted on Twitter by
S.V. Scarpino, from a talk by B.Klein)



What is new?

Why are we proposing a new approach then?

o Networks of interest: the ones with dynamics on them
o Observing the dynamics can help to infer the network...

e ...But only when detailed (node-level) information is
available

Question: what can we infer when little information is
available?



The idea behind: observing cascades

Example: simple SI model
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Many cascades — full inference (Adjacency Matrix) [2].



Remarks

Often full recovery of the graph is not needed
Degree distribution gives a lot of information!

With fewer observations we can infer it, but still too many
details (specifically: continuous observations)[3]



Can we do ‘better’?

o Aim: infering at least the family a network belongs to...

o ... when only discrete observations of the process are
available

o Two ingredients: SIS epidemics and Birth-Death process
approximation.



SIS model as a Birth-Death process

e1: infection eo: infection es: recovery
A A A
Infection with rate 7 per S-I link; recovery with rate ~.
High dimensionality, many methods try to reduce it [4]

Focus on the number of infected nodes:

Space state S = {0,..., N} and events are 1 jumps.

l

Birth-Death process? what rates?



Simple case: Complete network

probability of having k& infected
nodes at time t:

—

o= vk Pe(t) = ap-—1pr-1(t) — (ak + cx) pr(t)

ar =7 k(N — k) +crt1Pk+1(1)

@ ay, is known and not random =- exact master equation

e What is ai in the general case?



Maximum Likelihood Estimation

We are going to learn the rates. Assumptions:

1 Infection and recovery are independent Poisson processes of
rates a, and cg respectively

2 We have a sufficient statistics available (i.e. continuous

observations)

Maximising the Likelihood [5] leads to:

ap =
max L (ak, cx[{Obs}) =< jl’:
ak,dg Ck =3,

ug (dy) is the number of up (down) jumps from k,
ti is the time spent in k.



Is the approximation good?
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how does that

7=1.143, v = 1.941, (k) =8
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k
Different network families produce different (k, ay) curves!



Fit proposal

a, ~ al = CkP(N — k)1

MLE: Examples:
1 N—-1
G2 ( Uk — Tkak) 0 "
C k=1 :T/oz
N-1 o
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We concatenated 10* epidemics on 10? realisations for each
point!
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Towards inference based on discrete observations of the

epidemic

@ We used the Birth-Death process approximation of
epidemics to characterise different families in the C, p, g
space

o Now we will see how this helps when only discrete
observations (in time) are available



Bayesian inference

e Dataset: D = {I(t1),I(t2),...,1(tn)} = {k1,ko,... kn}

discrete observations

e prior distributions using output from characterisation:
Reg — (Capa Q) ~ TReg
E-R — (Cvpa Q) ~ TE—-R
B-A — (C7p7 Q) ~TB—-A
‘C(Ca b, q; D) = H ]P)(I(tl - ti*l) = kl|](0) = ki*l» Capa q)
i=2

e Maximum Posterior Probability 7(type|D) requires to
numerically evaluate this integral(costly!):

m(Dltype) = [ L(C,p, q; D)miype(C, p, q)dCdpdyg.



Example of a discrete dataset from a simulation

— v
.

Output probabilities:
PReg = 0.01%, pp—r = 0.02%, pp—a = 99.7%

I
it is a Barabdsi-Albert network (very likely)



To summarise

1 We introduced the Birth-Death Process approximation for
SIS on networks

2 We tested that it is a good approximation

3 We proposed a model for the rates that led to
characterisation

4

Inference based on discrete observations of the epidemic



Conclusions

o It is possible to infer the network family from discrete
observations of an epidemic

o Many directions are worth investigating:

More complex network models (clustering, communities,...)
Can we infer something more? ((k), 7)

Can we extend it to different dynamics? (SIR,SEIRS,...)
Is there a better parametric model to fit the a, curves?
Scaling with the size?

Real data?

®© 6 6 6 o o

@ We hope that this method will become a new useful tool in
network inference.
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Relative Frequencies
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