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Introduction: Network inference

What do we want to infer about Networks?

Link-based inference: adjacency matrix?

Topological parameters? (i.e. 〈k〉)

Some mesoscopic quantity related to the network structure
(comunities, clustering)?



Possibilities

How many ways do we have to infer networks?

Figure: A lot, apparently [1]! (picture posted on Twitter by
S.V. Scarpino, from a talk by B.Klein)



What is new?

Why are we proposing a new approach then?

Networks of interest: the ones with dynamics on them

Observing the dynamics can help to infer the network...

...But only when detailed (node-level) information is
available

Question: what can we infer when little information is
available?



The idea behind: observing cascades

Example: simple SI model

t = 0 t = 1

t = 2 t = 3

Inferred links

not inferred links

Many cascades → full inference (Adjacency Matrix) [2].



Remarks

Often full recovery of the graph is not needed

Degree distribution gives a lot of information!

With fewer observations we can infer it, but still too many
details (specifically: continuous observations)[3]



Can we do ‘̀betteŕ’?

Aim: infering at least the family a network belongs to...

... when only discrete observations of the process are
available

Two ingredients: SIS epidemics and Birth-Death process
approximation.



SIS model as a Birth-Death process

e1: infection e2: infection e3: recovery

Focus on the number of infected nodes:

Space state S = f0; : : : ; Ng and events are ±1 jumps.

Infection with rate τ per S-I link; recovery with rate γ.

Birth-Death process? what rates?

High dimensionality, many methods try to reduce it [4]



Simple case: Complete network

ak = τ k·(N − k)
ck= γk

=⇒

probability of having k infected
nodes at time t:

ṗk(t) = ak−1pk−1(t)− (ak + ck) pk(t)

+ck+1pk+1(t)

ak is known and not random ⇒ exact master equation

What is ak in the general case?



Maximum Likelihood Estimation

We are going to learn the rates. Assumptions:

1 Infection and recovery are independent Poisson processes of
rates ak and ck respectively

2 We have a sufficient statistics available (i.e. continuous
observations)

Maximising the Likelihood [5] leads to:

max
ak,dk

L (ak, ck|{Obs}) =

{
âk = uk

tk

ĉk = dk
tk

uk (dk) is the number of up (down) jumps from k,
tk is the time spent in k.



Is the approximation good?

τ = 1:5; p = 0:01

τ = 1:2; p = 0:008

τ = 1; p = 0:007

Erd}os-Rényi

N = 1000; γ = 2



how does that help?

Different network families produce different (k, ak) curves!



Fit proposal

ak ∼ aθk = Ckp(N − k)q

MLE: Examples:



1

C

N−1∑
k=1

(
uk − τkaθk

)
= 0

N−1∑
k=1

log(k)(uk − τkaθk) = 0

N−1∑
k=1

log(N − k)(uk − τkaθk) = 0



3-d plot

We concatenated 104 epidemics on 102 realisations for each
point!



2-d plot



Towards inference based on discrete observations of the
epidemic

We used the Birth-Death process approximation of
epidemics to characterise different families in the C, p, q
space

Now we will see how this helps when only discrete
observations (in time) are available



Bayesian inference

Dataset: D = {I(t1), I(t2), . . . , I(tn)} = {k1, k2, . . . , kn}
discrete observations

prior distributions using output from characterisation:

Reg→ (C, p, q) ∼ πReg

E-R→ (C, p, q) ∼ πE−R

B-A→ (C, p, q) ∼ πB−A

L(C, p, q;D) =

n∏
i=2

P(I(ti − ti−1) = ki|I(0) = ki−1, C, p, q)

Maximum Posterior Probability π(type|D) requires to
numerically evaluate this integral(costly!):
π(D|type) =

∫
L(C, p, q;D)πtype(C, p, q)dCdpdq.



Results

0 20 40 60 80 100
Time t

100

200

300

400

500

Nu
m
be

r o
f i
nf
ec
te
d 
no

de
s I
(t)

Example of a discrete dataset from a simulation
I(t)
Data

Output probabilities:
pReg = 0.01%, pE−R = 0.02%, pB−A = 99.7%

⇓
it is a Barabási-Albert network (very likely)



To summarise

1 We introduced the Birth-Death Process approximation for
SIS on networks

2 We tested that it is a good approximation

3 We proposed a model for the rates that led to
characterisation

⇓

Inference based on discrete observations of the epidemic



Conclusions

It is possible to infer the network family from discrete
observations of an epidemic

Many directions are worth investigating:

More complex network models (clustering, communities,...)
Can we infer something more? (〈k〉, τ)
Can we extend it to different dynamics? (SIR,SEIRS,. . . )
Is there a better parametric model to fit the ak curves?
Scaling with the size?
Real data?

We hope that this method will become a new useful tool in
network inference.
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