
Hyperstar: A multi-path A*

algorithm

7th Mathematics of Networks Meeting
Bristol University

27 June 2008

Professor Michael G H Bell

Dept of Civil & Environmental Engineering

Imperial College London

Rapid spread of Satnav

• Satnav devices have spread rapidly (4m in UK at
present)

• Relatively accurate electronic maps (NavTeq, Teleatlas,
etc.)

• However, link travel times are crude and seem to be
based on free flow values

• TMC/TPEG congestion warning messages lead to
rerouting

ARIAdNE: Penalty A* algorithm

ARIAdNE field trials

Garmin vs ARIAdNE arrival times

Garmin vs ARIAdNE routes

Garmin - ARIAdNE

ARIADNE betterARIADNE worse

Why ARIAdNE works better

© Crown copyright/database right 2006. An Ordnance Survey/EDINA supplied service

Comments

• The penalty A* algorithm works

• But, nice to be able to generate all routes
of interest at once

• Spiess and Florian hyperpath algorithm
does something similar

• Can it be adapted?

Dijkstra’s algorithm

1. Start at destination and set uj = ∞ for j ≠

destination and udest = 0

2. Put dest in OPEN

3. Search OPEN for smallest ui

4. For nodes j reached from i if uj > ui + cij

then uj = ui + cij

5. Put nodes j in OPEN and transfer i to
CLOSED

6. Return to Step 3 until origin in CLOSED

A* algorithm

1. Start at destination and set uj = ∞ for j ≠

destination and udest = 0

2. Put dest in OPEN

3. Search OPEN for smallest ui + hi,orig

4. For nodes j reached from i if uj > ui + cij

then uj = ui + cij

5. Put nodes j in OPEN and transfer i to
CLOSED

6. Return to Step 3 until origin is CLOSED

Hyperpath algorithm

• Hyperpath is a bundle of potentially
optimal paths

• Every link has both a cost and a service
frequency

• Where there is choice within the
hyperpath, allocation is proportional to
service frequency (the strategy)

• Elemental path only added to hyperpath if
the expected cost of travel is reduced

Hyperpath algorithm

1. Start at destination and set uj = ∞ for j ≠

destination, udest = 0 and Fi = 0

2. Put dest in OPEN

3. Search OPEN for smallest ui

4. For nodes j reached from i if uj > ui + cij then

uj = (Fi ui + fij cij) / (Fi + fij), Fi = Fi + fij and add

link (i,j) to HYPERPATH

5. Put nodes j in OPEN and transfer i to CLOSED

6. Return to Step 3 until origin is CLOSED

Reinterpreting the hyperpath

algorithm

• Note: 1 / fij = link headway = max link
delay = dij

• Allocation: Minmax exposure to delay

� pij dij = pik dik if links (i,j) and (i,k) attractive

� pij ∝ 1 / dij = fij

• Attractive: Add link to hyperpath if
“expected” travel time reduced. Expected
by whom? A risk averse traveller.

Singular hyperpath:

No delay

Hyperpath:

Medium max link delays

Hyperpath:

Large max link delays

Effect of A* speed-up

1. Start at destination and set uj = ∞ for j ≠

destination, udest = 0 and Fi = 0

2. Put dest in OPEN

3. Search OPEN for smallest ui + hi,orig

4. For nodes j reached from i if uj > ui + cij then

uj = (Fi ui + fij cij) / (Fi + fij), Fi = Fi + fij and add

link (i,j) to HYPERPATH

5. Put nodes j in OPEN and transfer i to CLOSED

6. Return to Step 3 until origin is CLOSED

H* algorithm

Discussion

• Approaches for handling uncertain delays
in road networks examined in context of
vehicle navigation � must be efficient �
based on A*

• Approach 1: Avoid unreliable links �
Penalty A* method

• Approach 2: Seek bundle of routes that
may be optimal by adapting A*, with actual
route determined by TMC/TPEG
messages

Danke für Ihre
Aufmerksamkeit!

Fragen?

