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Background

@ Internet routing has evolved organically, by the expedient hack....
@ ... basic principles need to be uncovered by reverse engineering.
@ In the process, a new type of path problem is discovered!

@ This may have widespread applicability beyond routing — perhaps
in operations research, combinatorics, and other branches of
Computer Science.
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Shortest paths example, sp = (N*°, min, +)

The adjacency matrix
1 2 3 4 5
2 5 4 1 oo 2 1 6 oo
/J\ 2 2 oo 5 oo 4
\T/ 4 6 o 4 oo o
6 \é 5 o0 4 3 o0 o
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Shortest paths example, continued

The routing matrix
1 2 3 4 5
2 5 4 1 0 21 5 4
/ 22 0 3 7 4
- 1 3 Ak=3|1 3 0 4 3
4 |57 407
6 4 5144370

Matrix A* solves this global
\QID optimality problem:

Bold arrows indicate the A, j) = Er;;gp ) w(p),
shortest-path tree rooted at 1. perind
where P(i, j) is the set of all paths
from i to j.
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Widest paths example, (N>, max, min)

The routing matrix
2 3
4

Matrix A* solves this global
optimality problem:

1 4 5
2 5 4 1 | o© 464
A\ 2| 4 oo 5 4 4
Af=3| 4 5 © 4 4

1 1 3 3 5
Y O 4| 6 4 4 o 4
6\4 5|1 4 4 4 4 ~

Bold arrows indicate the A(i, j) = X w(p),
widest-path tree rooted at 1. ’

where w(p) is now the minimal
edge weight in p.
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Fun example, (212 % ¢ U, N)

We want a Matrix A* to solve this
global optimality problem:
a abce c wrs
ta) {abc} te) A )= |J wip),
(K 69-0— -0
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from j to j with x in every arc weight along the path. J
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Fun example, (212 % ¢ U, N)

The matrix A*

1 2 3 4 5
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}

{ab} {ab} {ab} {abc} {b}
{bc} {bc} {bc} {b} {abc}

a A O N =
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Semirings

A few examples

name S ® ® 0 1 possiblerouting use
sp Ne© mn 4+ oo 0 minimum-weight routing
bw N* max min 0 oo greatest-capacity routing
rel 0,1 max x 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing
2w U n {} W shared link attributes?
oW N U W {} shared path attributes?

Path problems focus on global optimality

AG )= @ wip)

peP(i, j)
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Recommended Reading

Michel Gondran
Michel Minoux

Path Problems in

Graphs, Dioids Networks
and Semirings
New Models and Algorithms

John Baras

George Theodorakopoulos
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What algebraic properties are needed for efficient
computation of global optimality?

Distributivity

LD : a®((boc) = (avb)d(a®co),
RD : (aeb)ec = (avc)d(b®c).

What is this in sp = (N*°, min, +)?

L.DIST : a+ (bminc) = (a+ b) mn(a + ¢),
R.DIST : (amin b) + ¢ (a + ¢) min(b + c).

(I am ignoring all of the other semiring axioms here ...)
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Some realistic metrics are not distributive!

Two ways of forming “lexicographic” combination of shortest paths sp
and bandwidth bw.

Widest shortest paths

@ metric values of form (d, b)

@ dinsp

@ binbw

@ consider d first, break ties with b

@ is distributive (some details ignored ...)

Shortest Widest paths
@ metric values of form (b, d)
@ dinsp
@ binbw

@ consider b first, break ties with d

@ not distributive
gg22 ( Computer Laboratory University of CaLocal optimality in algebraic path problems (

V.
20-07-2012 11/29



Example

(10, 100)

(5 1)
O )

(7, 1)

@ node j prefers (10, 100) over (7, 1).
@ node i prefers (5, 2) over (5, 101). J

(5, 1)®((10, 100) & (7, 1)) = (5, 1) ® (10, 100) = (5, 101)
(5, 1)® (10, 101)) & ((5, 1)® (7, 1)) =(5, 101) & (5, 2) = (5, 2)
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Left-Local Optimality

Say that L is a left locally-optimal solution when

L=(AxL)al

That is, for i # j we have

L(i, j) = EP A, 9) @ L(q, J)
geV

@ L(/, j) is the best possible value given the values L(q, j), for all
out-neighbors g of source i.

@ Rows L(/, _) represents out-trees from / (think Bellman-Ford).

@ Columns L(_, /) represents in-trees to .
@ Works well with hop-by-hop forwarding from i.
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Right-Local Optimality
Say that R is a right locally-optimal solution when

R=RxA)al

That is, for i # j we have

R(i, j) = @R(, 9) @ A(q, j)
geV

@ R(/, j) is the best possible value given the values R(q, j), for all
in-neighbors g of destination j.

@ Rows L(/, _) represents out-trees from / (think Dijkstra).

@ Columns L(_, /) represents in-trees to .
@ Does not work well with hop-by-hop forwarding from /.
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With and Without Distributivity

With
For semirings, the three optimality problems are essentially the same
— locally optimal solutions are globally optimal solutions.

A"=L=R

Without

Suppose that we drop distributivity and A*, L, R exist. It may be the
case they they are all distinct.

Health warning : matrix multiplication over structures lacking
distributivity is not associative!
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Example

(5,1)\

(5,1) | (10,5)

(5:4)

— (5,1) @ (51) —(5

(10,1)

(bandwidth, distance) with lexicographic order (bandwidth first).
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Global optima

1 2 3 4 5
(0,0) (5,1) (0,00) (0,00) (0,00)
(0,00) (00,0) (0,00) (0,00) (0,00)

A" = (5,3) (o0, 0) (5,1) (5,2) |,
6) (5,2) (5,2) (c0,0) (10,1
5 (5,4) (5,1) (5,2) (00,0

a A~ WO N =
—
o
N
~
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Left local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
L=3]| (5,7) (53 (o0,0) (5,1) (5,2) [,
4 | (10,6) (5,2) (5,2) (00,0) (10,1)
5,1

[6,]

(10,5) (5,4) (5,1) (52) (0,0)

Entries marked in bold indicate those values which are not globally
optimal.
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Right local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
R=3| (5,2) (5,3) (o0, 0) (5,1) (5,2) |,
4 | (10,6) (5,6) (5,2) (o0,0) (10,1)
5 | (10,5) (5,5) (5,1) (5,2) (00,0)
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Left-locally optimal paths to node 2
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Right-locally optimal paths to node 2

352 é) 4 2

\

52
4—3—>2—d3><—5—>2
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Bellman-Ford can compute left-local solutions

A0l — |
Al — (Ao AR o,

@ Bellman-ford algorithm must be modified to ensure only loop-free
paths are inspected.

@ (S, @, 0) is a commutative, idempotent, and selective monoid,
@ (S, ®, 1) is a monoid,

@ 0 is the annihilator for ®,

@ 1 is the annihilator for &,

@ Left strictly inflationarity, L.S.INF : Va,b:a# 0 — a<a®b
@ Herea<b=a=aob.

v

Convergence to a unique left-local solution is guaranteed. Currently no
polynomial bound is known on the number of iterations required.
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Dijkstra’s algorithm can work for right-local optimal!

Input : adjacency matrix A and source vertex i € V,
Output : thei-throw of R, R(i, _).

begin
S« {i}
R(i, i)« 1
foreach g ¢ V —{i} : R(/, q) < A(i, q)
while S = V
begin
find g € V — Ssuch that R(/, q)is <% -minimal
S+ Su{q}
foreachjc V- S
R(i, /) < R(i, j) @ (R(i, q) ® A(q, /)
end
end
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From right to left ...

Need left-local optimal
L=(AeL)ol <« LT=(LT& ANl
where ®7 is matrix multiplication defined with as
a®" b=bxa

and we assume left-inflationarity holds, L.INF:Va,b: a< b® a.

Each node would have to solve the entire “all pairs” problem.

gg22 ( Computer Laboratory University of CaLocal optimality in algebraic path problems ( 20-07-2012 24/29




Minimal subset of semiring axioms needed right-local
Dijkstra

Béiring Axioms

ADD.ASSOCIATIVE : a®(b@c) = (a®b)@c
ADD.COMMUTATIVE : asb = boa
ADD.LEFT.ID : Oda = a
WO INSBOEKIIVE - grylbrwe) 2 (B b)IE e
MULT.LEFT.ID : 1i®a = a
MULHLRIGWY B - d8M 4 4
MUVHLLEHTIANM 0/ila 4 ©
WO RVGHAL KRG 440 4 0
UDSHRBUTINE - ami(bmie) 2 (8rb) (e e)
RIDISTHBUTIVE - (aavb)we 2 (am0)mbiKe)
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Additional axioms needed right-local Dijkstra

ADD.SELECTIVE : asb € {a b}

ADD.LEFT.ANN 1¢9a = 1

ADD.RIGHT.ANN : a1 = 1
RIGHT.ABSORBTION : a®(a®b) = a

RIGHT.ABSORBTION gives inflationarity, Va,b: a < a® b.
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The goal

Given adjacency matrix A and source vertex i € V, Dijkstra’s algorithm
will compute R(/, _) such that

vj € V:R(i, j) =1(i,j)) ® P R(i, q) @ A(q, j).
geV

Main invariant

VK1 <k<| V] = Vje S :Rli, ) = 1. j)e @D Re(i, )=A(q, J)
qESk

v

Routing in Equilibrium. Joado Luis Sobrinho and Timothy G. Giriffin.
The 19th International Symposium on Mathematical Theory of
Networks and Systems (MTNS 2010).
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A small snapshot using Coq + ssreflect

Variable plus_associative tVxyz, xe (yoaz) =(xeyl ez
Variable plus_commutative TV Y, X @By =y e X

Variable plus_selective tvxy, (key=x) || (xey=y).
(* i1dentities *)
Variable zero_is_left_plus_id : vx, zero & x = x.

Variable one_is_left_times id : ¥x, one @ x = x.

(* one 1s additive annihilator *)
Variable one_is_left_plus_ann : ¥x, one & x = one.

Variable one_is_right_plus_ann : ¥x, x ® one = one.

(* right absorbtion *)
Variable right_absorption :¥ab:T, ae (ae®b) ==a.
Definition lno {a b : T) (= a e b == a.

Motatien "A = B" := (lno A B} (at level 60).

Lemma lno_right_increasing : Yab : T, a=aehb.
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Using Coq + Ssreflect

Talk will finish with an interactive look at a proof

http://www.cl.cam.ac.uk/ tgg22/metarouting/rie-1.0.v J
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