Hub Sync in Heterogeneous Networks Synchronization goes upscale

> Tiago Pereira Jeroen S.W. Lamb

How the individual dynamics and the interaction structure affect the network function

Typical structure of real networks

Albert and Barabási, Rev. Mod. Phys. 74, 47 (2002).

Chung and Lu, AMS (2006).

Barrat, Barthelemi, Vespegnani, Cambridge UP (2008).

Hubs are ubiquitous

Scientific Collaboration

Airports/Cities

Internet/www

Cortex

Background: Global Synchronization

Heterogeneity hinders global synchronization

McGraw & Menzinger, Phys. Rev. E 72, 015101 (2005).

Hwang, et al., Phys. Rev. Lett. 94, 138701 (2005)

Nishikawa, et al., Phys. Rev. Lett. 91, 014101 (2003)

Hubs play a central role

hub neurons play a major role during development - orchestrate the collective behavior

Bonifazi, Goldin, Picardo, et al., Science 326, 1419 (2009).

Hubs play a central role

hub neurons can drive towards epileptic seizures

Morgan and Soltesz, PNAS 105, 6179 (2008).

Hubs play a central role

Numerical experiments suggest

Heterogeneity favors the formation of Synchronization Cluster

C. Zhou and J. Kurths, Chaos 16, 015104 (2006);

Gardenes, Moreno, Arenas, Phys. Rev. Lett. 98, 034101 (2007);

Pereira, Phys. Rev. E 82 036201 (2010)

3000 Rössler Oscillators

Diffusively Coupled in a Scale-Free network

Hubs degree 165

Lower degree 2

Synchronized Nodes

Synchronization Structure

Lorenz Dynamics

Lorenz Dynamics: Heterogeneous Network

Start with a random network

400 Nodes

Lorenz Dynamics: Heterogeneous Network

Include the Hubs randomly

Difference between of nodes and the main Hub

Time Series of the Lorenz: Hubs and Low-degree

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{F}(\mathbf{x}_i) + \frac{\alpha}{m} \sum_{j=1}^n A_{ij}(\mathbf{x}_j - \mathbf{x}_i)$$

m Largest DegreeA Adjacency Matrix

Network Assumptions: Heterogeneity

$$\frac{k_i}{m} = \mu_i \left[1 + O\left(\frac{1}{m^{\gamma}}\right) \right] \qquad \text{Hubs}$$

$$\frac{k_i}{m} = O\left(\frac{1}{m^{\gamma}}\right) \qquad \text{Low degree Nodes}$$

Dynamics Assumptions: Stability

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x})$$

and consider the flow ϕ^t

Dynamics Assumptions: Stability

There is an attractor $U \subset \mathbb{R}^m$

 $\phi^t(U) \subset U$

Dynamics Assumptions: Stability

$$\frac{d\mathbf{y}}{dt} = \mathbf{F}(\mathbf{y}) + \mathbf{g}(\mathbf{y}, t)$$

such that $\|\mathbf{g}(\mathbf{y},t)\| \leq \varepsilon$

Consider the flow ψ^t

Consider the Borel measure $\,\,
u\,$ supported on $\,\,U\,$

$$\left\| \int hd(\phi_*^t \nu) - \int hd(\psi_*^t \nu) \right\| \le M\varepsilon$$

for all smooth functions h

Main Results

Consider the diffusively coupled model under satisfying the two assumptions. Let all initial conditions be independent and identically distributed according to a measure ν supported on U. Let i and j stand for hubs and let $\mu_i > \mu_j$ and $\alpha \mu_i > \alpha_c$ with

$$\mu_i - \mu_j > O(m^{-\gamma})$$

then

$$\|\boldsymbol{x}_{i}(t) - \boldsymbol{x}_{j}(t)\| \leq K \frac{\alpha(\mu_{i} - \mu_{j})}{\mu_{i}\alpha - \alpha_{c}},$$

with probability $1 - O(m^{-\gamma})$ and $K = K(\mathbf{f})$.

Coupling term in the Hubs

$$\frac{1}{m}\sum_{j=1}^{n}A_{ij}(\mathbf{x}_j-\mathbf{x}_i) = \underbrace{\mathbf{v}_i(t)}_{local\ mean\ field} -\frac{k_i}{m}\mathbf{x}_i$$

Initially the measure of the network is product

 u^n

1. Step

Consider the network flow

$\Psi^t: \mathbb{R} \times \mathbb{R}^{nm} \to \mathbb{R}^{nm}$

Hence

 $\Psi^t_*(\nu^n)$

is the measure for the network

Loosely Speaking

Low deg are almost independent

Loosely Speaking

 $\Psi^t_*(\nu^n) \approx \underbrace{\lambda^t}_{} \times \underbrace{[\omega^t]^{n-\ell}}_{}$ hubslow deq

Take expectations with all the hubs coordinates and time fixed

Mean Field Theory: Uniformity

$$\mathbb{P}(\|\mathbf{v}_i(t) - \mu_i \mathbf{u}(t)\| \ge \varepsilon) = O\left(\frac{1}{m^{\gamma}}\right)$$

Main Ideas: Stability

Study the quantity

$$\xi = \mathbf{x}_j - \mathbf{x}_i$$

where i and j stand for hubs

Main Ideas: Stability

$$\frac{d\xi}{dt} = \mathbf{K}(t,\mu_i)\xi + \alpha\eta_i$$

where

$$\mathbf{K}(t,\mu_i) = \int_0^1 D\mathbf{F}(\mathbf{x}_i + \beta\xi) d\beta - \alpha \mu_i \mathbf{I}$$

Main Ideas: Stability

$$\frac{d\xi}{dt} = \mathbf{K}(t,\mu_i)\xi + \alpha\eta_i$$

where

$$E\eta_i = O(\mu_i - \mu_j) + O\left(\frac{1}{m^{\gamma}}\right)$$

Hub Sync Stability

1. Control the coupling so that the homogeneous equation is uniformly asymptotic stable

2. Variations of Parameters

Hub Sync Stability

Numerical study reveals that Hub synchronization it is still present on random networks without the stability assumption

Take Home

The rich socialize

Functional Matthew Effect

Take Home

Cheaper to Synchronize the Hubs

 $\alpha_c = O(1)$ Hubs

$$\alpha_c = O(m)$$
 Global

Take Home

Heterogeneity allows for the expression of a rich variety of collective phenomena