
Online Similarity Prediction of Networked Data
from Known and Unknown Graphs

Claudio Gentile, Mark Herbster, Stephen Pasteris

Universita’ dell’Insubria, University College London

13 June 2013

Claudio Gentile, Mark Herbster, Stephen Pasteris Online Similarity Prediction of Networked Data from Known and Unknown Graphs

What is Learning?

Supervised Learning

Given data S = {(x1, y1), ..., (xl , yl)}, infer a function f such
that f (xi) ≈ yi for all possible instances xi .

Unsupervised Learning

Given data S = {x1, ..., xl}, model the data. e.g:

Fit a probability distribution to the space of all possible
instances.
Map the instances to a low dimensional manifold in the
instance space, such that the mapped instance is close to the
original instance.

Semi-Supervised Learning

Given data S = {(x1, y1), ..., (xl , yl), xl+1, ..., xn}, infer a function
f such that f (xi) ≈ yi for all possible instances xi . Utilises both
supervised and unsupervised methods.

What is Learning?

Batch Learning

Learner is given the data set S and then performs the learning
task

Online Learning

We are given an initial data set S.

Learning proceeds in rounds. On each round:
1 Learner is queried (with some instance).
2 Correct answer is given, which updates the data set S.

In this paper we focus on online, semi-supervised learning.

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction:

Outcome:

Mistakes:

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction:

Outcome:

Mistakes:

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart

Outcome:

Mistakes:

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart

Outcome: Bart

Mistakes:

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart

Outcome: Bart

Mistakes: 0

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart

Outcome: Bart

Mistakes: 0

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart Bart

Outcome: Bart

Mistakes: 0

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart Bart

Outcome: Bart Lisa

Mistakes: 0

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart Bart

Outcome: Bart Lisa

Mistakes: 0 1

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart Bart

Outcome: Bart Lisa

Mistakes: 0 1

Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart Bart Lisa Maggie Maggie

Outcome: Bart Lisa Lisa Maggie Bart

Mistakes: 0 1 1 1 2

An Example Mistake Bound - The Halving Algorithm

We have a labelled line graph with n vertices:

Suppose a priori:

We know no labels

We know that the cutsize is at most 1.

Let H be the set of all 2n consistent classifiers:

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red or Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red or Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red or Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red or Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red or Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red or Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Blue
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

Prediction: Majority vote amongst classifiers in H: Red
Update: Remove inconsistent classifiers from H.

An Example Mistake Bound - The Halving Algorithm

|H| is initially 2n.

When a mistake is made at least half the classifiers are
removed from H.

The correct classifier is never removed from H so we always
have |H| ≥ 1

.

Hence:
No more than log2(2n) mistakes made.

Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction:

Outcome:

Mistakes:

Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction:

Outcome:

Mistakes:

Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction: Similar

Outcome:

Mistakes:

Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction: Similar

Outcome: Similar

Mistakes:

Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction: Similar

Outcome: Similar

Mistakes: 0

Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction: Similar

Outcome: Similar

Mistakes: 0

Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction: similar disim. disim. similar similar

Outcome: similar disim. similar similar disim.

Mistakes: 0 0 1 1 2

Connection Between Classification and Similarity

Notation

A concept y is a mapping from instances into K -classes.

BA(y) the maximal mistakes by algorithm A wrt concept y .

Theorem

Given classification algorithm C there exists similarity algorithm S
such that for any concept y :

BS(y) ≤ 5 BC (y) log2 K

Given similarity algorithm S there exists classification algorithm C
such that for any concept y :

BC (y) ≤ BS(y) + K

Problem

Construction requires exponential-time!

Recipe for a solution

Ingredients (basic)

1 Linear classifiers via “metric”-learning kernel [XNJR02,SSN04]

2 Online algs: Matrix Perceptron and Matrix Winnow [W07]

Ingredients (fancy) :
Aim: optimal mistake bounds or poly-log-time predictions

1 Prediction on a graph framework [CGVZ10,HLP09]

2 Expected mistake bound with random spanning trees

3 Linearization with path graph embedding

4 Reduced diameter and fast prediction with binary support tree

Results: Matrix winnow (optimality)
Matrix perceptron (speed)

Similarity prediction on a graph

• The graph is labeled by y : vertices→ {•, •, •}
• Instances are pairs of vertices, for example (v , w)

wv

Φ(y)= 3 (cut)

R(v , w)= 2 (eff. resistance)

ϕr (y)= 21
2 (eff. resistance-weighted cut)

Linear classification: Perceptron and Winnow

x
x

x

x

x

x

x
x

x x

x
xx

x

x

We have a finite dimensional inner product space V.

Instances are vectors in V.

There exists a hyperplane H which classifies instances.

Goal: Learn H.

Linear classification: Perceptron and Winnow

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

x

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

x

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Linear classification: Perceptron and Winnow

x

x

x

x

x

x

Predict according to H
If mistake is made then H is updated according to the new
instance.

Similarity prediction via linear classification

Inner-Product Space

V is the space of n × n matrices with:

〈A, B〉 := Trace(ATB) (1)

Encoding

A pair of vertices (v , w) is encoded as the matrix:

√
L+(ev − ew)(ev − ew)T

√
L+

Graph Laplacian: L; Basis vector: ev

Similarity prediction via linear classification

Mistake bounds

MW ≤ O([Φ(y)RG] log(n)) (Winnow)

MP ≤ O([Φ(y)RG]2) (Perceptron)

Resistance diameter: RG ; Number of vertices: n

Graph approximation via a random BST

Construct: Random BST

1 Bounds ito resistance-weighted cut-size [E[ΦG ′
(y)] = ϕr

G (y)]

2 Intermediate step [ΦG ′′
(y) ≤ 2ΦG ′

(y)]

3 Enables polylog time [ΦG ′′′
(y) ≤ (log n)ΦG ′′

(y); RG ′′′
= log n]

4 Hence E[ΦG ′′′
(y)] ≤ 2ϕr

G (y) log n

2

3

1

4

8

7

6

5

2

3

1

4

8

7

6

5

Original graph G (Step 0) Sample random tree G ′ (Step 1)

2

3

1

4

8

7

6

5

1 2 3 4 5 6 7 8

Embed in path graph G ′′ (Step 2) Build binary sup. tree G ′′′ (Step 3)

Graph approximation via a random BST

Construct: Random BST

1 Bounds ito resistance-weighted cut-size [E[ΦG ′
(y)] = ϕr

G (y)]

2 Intermediate step [ΦG ′′
(y) ≤ 2ΦG ′

(y)]

3 Enables polylog time [ΦG ′′′
(y) ≤ (log n)ΦG ′′

(y); RG ′′′
= log n]

4 Hence E[ΦG ′′′
(y)] ≤ 2ϕr

G (y) log n

2

3

1

4

8

7

6

5

2

3

1

4

8

7

6

5

Original graph G (Step 0) Sample random tree G ′ (Step 1)

2

3

1

4

8

7

6

5

1 2 3 4 5 6 7 8

Embed in path graph G ′′ (Step 2) Build binary sup. tree G ′′′ (Step 3)

Graph approximation via a random BST

Construct: Random BST

1 Bounds ito resistance-weighted cut-size [E[ΦG ′
(y)] = ϕr

G (y)]

2 Intermediate step [ΦG ′′
(y) ≤ 2ΦG ′

(y)]

3 Enables polylog time [ΦG ′′′
(y) ≤ (log n)ΦG ′′

(y); RG ′′′
= log n]

4 Hence E[ΦG ′′′
(y)] ≤ 2ϕr

G (y) log n

2

3

1

4

8

7

6

5

2

3

1

4

8

7

6

5

Original graph G (Step 0) Sample random tree G ′ (Step 1)

2

3

1

4

8

7

6

5

1 2 3 4 5 6 7 8

Embed in path graph G ′′ (Step 2) Build binary sup. tree G ′′′ (Step 3)

Graph approximation via a random BST

Construct: Random BST

1 Bounds ito resistance-weighted cut-size [E[ΦG ′
(y)] = ϕr

G (y)]

2 Intermediate step [ΦG ′′
(y) ≤ 2ΦG ′

(y)]

3 Enables polylog time [ΦG ′′′
(y) ≤ (log n)ΦG ′′

(y); RG ′′′
= log n]

4 Hence E[ΦG ′′′
(y)] ≤ 2ϕr

G (y) log n

2

3

1

4

8

7

6

5

2

3

1

4

8

7

6

5

Original graph G (Step 0) Sample random tree G ′ (Step 1)

2

3

1

4

8

7

6

5

1 2 3 4 5 6 7 8

Embed in path graph G ′′ (Step 2) Build binary sup. tree G ′′′ (Step 3)

An optimal algorithm (Matrix Winnow + random BST)

Theorem

The mistakes of Winnow + random BST is bounded above ∀y:

E[M] ≤ O(ϕr (y) log3(n))

Direct implementation requires O(n3) time per round.

A fast algorithm (Matrix Perceptron + random BST)

Theorem

The mistakes of Perceptron + random BST is bounded ∀y by

E[M] ≤ O
(
ϕr (y)2 log4(n)

)

There exists an O(log2 n) time per round implementation

• An exponentially faster per-round prediction •

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w
1

2

3

4

5

6

7

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w
1

2

3

4

5

6

7

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w
1

2

3

4

5

6

72

3 5

6

Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)

2

v w
1

2

3

4

5

6

72

3 5

6

A question

What if the graph is unknown?

Unknown graph

Model: progressive graph disclosure

Nature presents a vertex pair & a path connecting the vertices

Learner predicts similarity of pair.

Nature reveals similarity.

Algorithm sketch

3 4

7

21

6

5

e2

e1

3 4

7

21

6

5

e6

e3

3 4

7

21

6

5

e2

e1

6 3→ 4→2 →1→3

3 4

7

21

6

5

e2

e1

e4e3

4 1→ →2 5→

e4

e5

3 4

7

21

6

5

e2

e1

e3

6→7

e4

e5

3 4

7

21

6

5

e2

e1

e3

4→6 7 5→ →

e4

e5

e6

t=1 t=2 t=4t=3 t=5t=0

Theorem

There exists a p-norm perceptron-based algorithm such that

M ≤ O(Φ(y)4 log(n))

Unknown graph

Model: progressive graph disclosure

Nature presents a vertex pair & a path connecting the vertices

Learner predicts similarity of pair.

Nature reveals similarity.

Algorithm sketch

3 4

7

21

6

5

e2

e1

3 4

7

21

6

5

e6

e3

3 4

7

21

6

5

e2

e1

6 3→ 4→2 →1→3

3 4

7

21

6

5

e2

e1

e4e3

4 1→ →2 5→

e4

e5

3 4

7

21

6

5

e2

e1

e3

6→7

e4

e5

3 4

7

21

6

5

e2

e1

e3

4→6 7 5→ →

e4

e5

e6

t=1 t=2 t=4t=3 t=5t=0

Theorem

There exists a p-norm perceptron-based algorithm such that

M ≤ O(Φ(y)4 log(n))

Unknown graph

Model: progressive graph disclosure

Nature presents a vertex pair & a path connecting the vertices

Learner predicts similarity of pair.

Nature reveals similarity.

Algorithm sketch

3 4

7

21

6

5

e2

e1

3 4

7

21

6

5

e6

e3

3 4

7

21

6

5

e2

e1

6 3→ 4→2 →1→3

3 4

7

21

6

5

e2

e1

e4e3

4 1→ →2 5→

e4

e5

3 4

7

21

6

5

e2

e1

e3

6→7

e4

e5

3 4

7

21

6

5

e2

e1

e3

4→6 7 5→ →

e4

e5

e6

t=1 t=2 t=4t=3 t=5t=0

Theorem

There exists a p-norm perceptron-based algorithm such that

M ≤ O(Φ(y)4 log(n))

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

Conclusion

Summary

Established an equivalence between classification and similarity

Modeled as a graph labeling problem

Designed a randomized BST graph-approximation

Optimal to log-factors prediction with Matrix Winnow

Fast poly-log-time prediction with the Matrix Perceptron

Introduced a novel “unknown” graph framework

Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting

References

[CGVZ10]N. Cesa-Bianchi, C Gentile, F. Vitale, and G.
Zappella. Random spanning trees and the prediction
of weighted graphs. In ICML 2010.

[HKS12]E. Hazan, S. Kale, and S. Shalev-Shwartz.
Near-Optimal Algorithms for Online Matrix
Prediction In COLT, 2002.

[HLP09]M. Herbster, G. Lever, and M. Pontil. Online
prediction on large diameter graphs. In NIPS 2009.

[SSN04]S. Shalev-Shwartz, Y. Singer, and A. Ng. Online and
batch learning of pseudo-metrics. In ICML 2004.

[XNJR02]E. P. Xing, A. Y. Ng, M. I. Jordan, and J. Russell S.
Distance metric learning with application to
clustering with side-information. In NIPS 2002.

[W07]M. K. Warmuth. Winnowing subspaces. In ICML
2007.

