What is the dimension of citation space?

James R. Clough Tim .S. Evans

Imperial College London Centre for Complexity Science

Mathematics of Networks 2014

Imperial College

What is the dimension of c	itation space?
----------------------------	----------------

- Citation analysis

Why should we care about citation analysis?

- There's just too many papers too read
- We need ways of deciding which papers are likely to be useful to our research
- Citation analysis can provide a mechanism for quantifying this

Imperial College

```
What is the dimension of citation space?
```

- Citation analysis

Can we just count citations?

The simplest method of measuring usefulness is counting citations.

But not all citations mean the same thing

- Cite a paper because it was genuinely useful
- Cite their own paper
- Cite their colleague/friend's paper
- Reviewer inserts citation to their paper
- Author copies from the bibliography of another paper
- Cite well known paper in the field even if it was not useful to this work

Imperial College

```
What is the dimension of citation space?
```

- Citation analysis

Can we just count citations?

The simplest method of measuring usefulness is counting citations.

But not all citations mean the same thing

- Cite a paper because it was genuinely useful
- Cite their own paper
- Cite their colleague/friend's paper
- Reviewer inserts citation to their paper
- Author copies from the bibliography of another paper
- Cite well known paper in the field even if it was not useful to this work

Imperial College

```
What is the dimension of citation space?
```

- Citation analysis

Can we just count citations?

The simplest method of measuring usefulness is counting citations.

But not all citations mean the same thing

- Cite a paper because it was genuinely useful
- Cite their own paper
- Cite their colleague/friend's paper
- Reviewer inserts citation to their paper
- Author copies from the bibliography of another paper
- Cite well known paper in the field even if it was not useful to this work

Imperial College

```
What is the dimension of citation space?
```

- Citation analysis

Can we just count citations?

The simplest method of measuring usefulness is counting citations.

But not all citations mean the same thing

- Cite a paper because it was genuinely useful
- Cite their own paper
- Cite their colleague/friend's paper
- Reviewer inserts citation to their paper
- Author copies from the bibliography of another paper
- Cite well known paper in the field even if it was not useful to this work

Imperial College

```
What is the dimension of citation space?
```

- Citation analysis

Can we just count citations?

The simplest method of measuring usefulness is counting citations.

But not all citations mean the same thing

- Cite a paper because it was genuinely useful
- Cite their own paper
- Cite their colleague/friend's paper
- Reviewer inserts citation to their paper
- Author copies from the bibliography of another paper
- Cite well known paper in the field even if it was not useful to this work

Imperial College

```
What is the dimension of citation space?
```

- Citation analysis

Can we just count citations?

The simplest method of measuring usefulness is counting citations.

But not all citations mean the same thing

- Cite a paper because it was genuinely useful
- Cite their own paper
- Cite their colleague/friend's paper
- Reviewer inserts citation to their paper
- Author copies from the bibliography of another paper
- Cite well known paper in the field even if it was not useful to this work

Imperial College

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

```
What is the dimension of citation space?
```

- Citation analysis

Can we just count citations?

The simplest method of measuring usefulness is counting citations.

But not all citations mean the same thing

- Cite a paper because it was genuinely useful
- Cite their own paper
- Cite their colleague/friend's paper
- Reviewer inserts citation to their paper
- Author copies from the bibliography of another paper
- Cite well known paper in the field even if it was not useful to this work

Imperial College

- Citation analysis

Is this a real problem?

Academics and universities care about citation counts

- Journals care about impact factor
- Simkin & Roychowdhury estimated that around 80% of citations did not involve the author actually reading the paper they cite[2]

Imperial College

- Citation analysis

Solution? Use more of the network structure

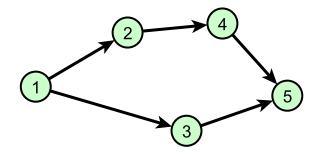
- We have more information than just the number of citations a document has.
- There is a whole citation network structure to characterise and measure.
- Our approach look at the causal structure of the network.

Imperial College

-Our Approach - Causal Structure

- Causal Structure in Citation Networks

Citation Networks form Directed Acyclic Graphs


- We form a graph, where each document is a node
- A directed edge goes from node A to node B if A cites B in it's bibliography
- This means A must have been published after B, and edges go backwards in time. There can't be any closed loops (cycles).

Imperial College

Our Approach - Causal Structure

-Causal Structure in Citation Networks

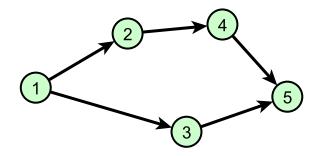
Citation Networks form directed Acyclic Graphs

Imperial College London < ০০ > বল্ল > বছা প্রবান

Our Approach - Causal Structure

- Causal Structure in Citation Networks

Causal Structure


- Two nodes are causally connected if there is a path from one to the other, respecting edge direction.
- The set of these relations is what we mean by causal structure.

Imperial College

Our Approach - Causal Structure

Causal Structure in Citation Networks

Causal Structure

-Our Approach - Causal Structure

- Causal Structure in Citation Networks

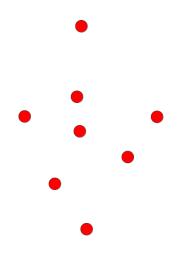
Causal Structure

- We want to characterise the causal structure of a network
- We'll do this by making comparisons to the simplest set of models of networks with the same temporal constraints networks embedded in Minkowski space.
- This model comes from a discrete approach to quantum gravity.

Imperial College

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our Approach - Causal Structure


- Spacetime networks

Take N nodes, and uniformly scatter them in a spacetime by giving them a time coordinate, t_{α} and D-1 spatial coordinates, x_{α}^{i}

Our Approach - Causal Structure

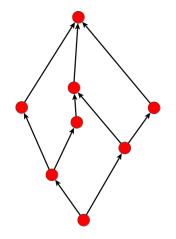
- Spacetime networks

- Example of spacetime network where D = 2
- Time on vertical axis
- 1 spatial dimension on horizontal axis

Imperial College

- Take N nodes, and uniformly scatter them in a spacetime by giving them a time coordinate, t_α and D – 1 spatial coordinates, xⁱ_α
- We then put an edge between two nodes, A and B if

$$(t_A - t_B)^2 > \sum_i (x_A^i - x_B^i)^2$$
 (1)


Imperial College

(ロ) (同) (ヨ) (ヨ) (ヨ) (□) (0)

- So nodes are connected if they are more separated in time than they are in space
- Which is the same rule that defines how information can propagate through spacetime in special relativity.

-Our Approach - Causal Structure

- Spacetime networks

- Example of spacetime network where D = 2
- Time on vertical axis
- D-1 = 1 spatial dimension on horizontal axis
- Nearest neighbour links drawn for simplicity

Imperial College

-Our Approach - Causal Structure

- Spacetime networks

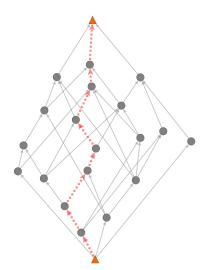
Dimension

- Question if we forget about the coordinates each point has, and just look at the nodes and edges can we work out what D was?
- Answer yes and this is how we will characterise these networks.
- Two ways of doing this developed in the causal set approach to quantum gravity. They only depend on the causal structure.
- While there are already methods of defining a 'dimension' for a network, they only consider spatial dimensions, but we will consider a time dimension separately as it has merial College different constraints.

Our Approach - Causal Structure

- Dimension Measures

Method 1 - Midpoint Scaling Dimension

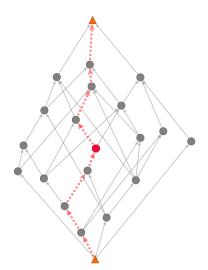

- Find a source node and a sink node and look at the set of nodes in between them
- Find the longest chain from the source to the sink this is a good approximation of the geodesic (shortest path) through that space

Imperial College

Our Approach - Causal Structure

- Dimension Measures

Method 1 - Midpoint Scaling Dimension


 Start and end nodes orange triangles

Imperial College

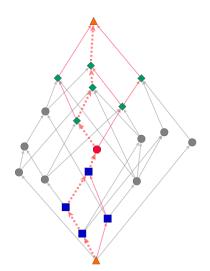
-Our Approach - Causal Structure

- Dimension Measures

Method 1 - Midpoint Scaling Dimension

 Start and end nodes orange triangles

Imperial College


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Find midpoint - red octagon

-Our Approach - Causal Structure

- Dimension Measures

Method 1 - Midpoint Scaling Dimension

- Start and end nodes orange triangles
- Find midpoint red octogon
- Find two intervals
- (start, middle) blue squares
- (middle, end) green diamonds
- ► The fraction of nodes in one of those intervals is

 ¹/_{2D}

 ¹/_{2D}

 Imperial College
 London

Our Approach - Causal Structure

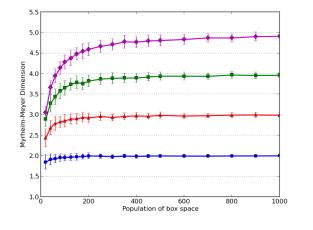
- Dimension Measures

Method 2 - Myrheim-Meyer Dimension

Can be shown that the expected number of causally connected pairs, $\langle S_2 \rangle$ is just a function of *N* and *D*

$$\frac{\langle S_2 \rangle}{N^2} \equiv f(D) = \frac{\Gamma(D+1)\Gamma(D/2)}{4\Gamma(\frac{3}{2}D)}$$
(2)

Imperial College


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So we can just measure how many of them there are, and then solve for D.[3]

-Our Approach - Causal Structure

- Dimension Measures

OK - but does this actually work?

Imperial College London

Our Approach - Causal Structure

- Dimension Measures

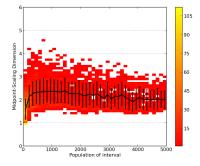
So what are we going to do?

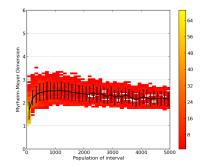
- So we have two different ways of measuring what kind of Minkowski space a network was embedded in
- We are now going to use these methods on real citation data and see what happens
- We will sample lots of intervals in the network to build up a picture of its causal structure

Imperial College

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

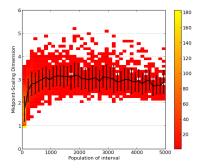
-Results and Interpretation

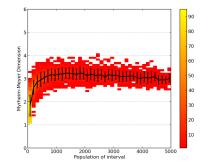



- Academic papers from the arXiv
- Patents from the USA (1970-2000)
- Judgements from the Supreme Court of the USA (1790-2012)

Imperial College

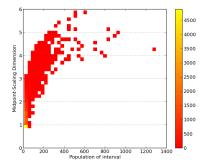
-Results and Interpretation

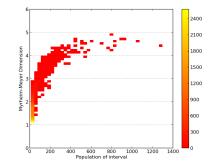

arXiv - high energy theory



-Results and Interpretation

arXiv - high energy phenomenology

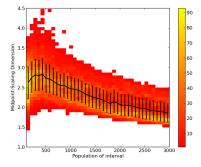


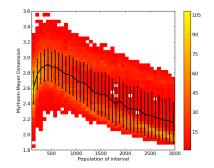


Imperial College London 《 ㅁ › 《 큔 › 《 흔 › 《 흔 › 《 튼 · 의익은

-Results and Interpretation

Patents





Imperial College London 《 ㅁ › 《 큔 › 《 큔 › 《 큔 › 운티트 '아이어

-Results and Interpretation

Supreme Court

Imperial College London 《 ㅁ ▷ 《 큔 ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ 의식은

Results and Interpretation

Interpretation

- High energy theory 2
- High energy phenomenology 3
- Patents 5
- Supreme Court 3 at small scales, 2 at large scales

Imperial College

- Results and Interpretation

Interpretation

- These dimension measures can easily distinguish between otherwise very similar citation networks
- They can be used to test whether models of citation network are really replicating the right behaviour on large scales

Imperial College

- Results and Interpretation

Interpretation

- We conjecture that these dimension measures can be interpreted in terms of how 'broad' or 'narrow' the citation behaviour in a field is.
- In a 'narrow' field where everybody cites all the same papers, the measured dimension would be 1
- In a 'broad' field where many people cite a paper without citing each other the measured dimension would be higher

Imperial College

-Summary and future work

Summary

- Independent dimension estimates agree, and there seems to be a consistently defined 'spacetime dimension' for citation networks
- They can be used to test whether models of citation network are really replicating the right behaviour, and can distinguish between similar networks
- Might help us 'quantify interdisciplinarity' future work is on investigating this

Imperial College

- Appendix

Bibliography

Bibliography I

J.R. Clough, T.S. Evans What is the dimension of citation space? http://arxiv.org/abs/1408.1274 (Full list of citations available in this paper)

M.V. Simkin, V.P. Roychowdhury Read before you cite! arxiv.org/abs/condmat/0212043

Manifold dimension of a causal set

http://arxiv.org/abs/gr-qc/0207103

Imperial College