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   Evolutionary linguistics

Charles Darwin offered languages as an illustrative example 
of evolution

Languages show analogies to genetic features: mutation 
and inheritance

The history of languages has a close correspondence to the 
history of humanity

The origin of language ↔ the origin of modern humanity?
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Figure 1. A. Schleicher, Die Deutsche Sprache (Stuttgart, 1869), 2nd edn (1st edn, 1860), p. 28. 
Courtesy of the University of Chicago Library. 

These inter-connected ideas of classification, reconstruction and relation were 
Schleicher's most noted contributions and ideas concerning language. These were 
presented in several of his works; his Compendium der vergleichenden Grammatik der 
indogermanischen Sprachen (two parts; 1861-62) probably represents the most complete 
statement of his views, though it is evident that Schleicher had enunciated many of his ideas 
earlier. For example, in Zur vergleichende Sprachengeschichte (1848) he suggested that 
languages are natural organisms because, like plants and animals, they can be grouped into 
families; such a system of classification can be used to describe the relationships between 
languages.20 He also claimed that linguistics is a natural science, though he pointed out that 
he was not the first to hold this idea; he recognized that Franz Bopp (1791-1867) had the 
same view.2' In Die Sprachen Europas (1850), Schleicher had described the genealogical 
relationships between languages; he presented these in Stammbaum form in Die Deutsche 
Sprache (1860).22 (See Figures 2 and 3.) 

In 1863 Schleicher published Die Darwinsche Theorie und die Sprachwissenschaft, in 
which he attempted to apply Darwinian ideas to an account of the development of 

20 A. Schleicher, Zur vergleichenden Sprachengeschichte, Bonn, 1848, 28. 
21 Ibid. Bopp's comparison of the study of language to natural history appears in several of his works, e.g. 

F. Bopp, Vocalismus oder sprachvergleichenden Kritiken uber J. Grimm's deutsche Grammatik und Graffs 
althochdeutschen Sprachschatz mit Begrundung einer neuen Theorie des Ablauts, Berlin, 1836, 1. 

22 A. Schleicher, Die Sprachen Europas in systematischer Uebersicht, Bonn, 1850, see e.g. part five of the 
introduction, 'Ueber die Sprachen Europas im Allgemeinen', pp. 28-39; Die Deutsche Sprache, 2nd edn, 
Stuttgart, 1869 (lst edn 1860), 28, 82, 94. 

(“Language stock”)

(Language families)

(Ancestral language)

Wednesday, 3 September 2014



  Introduction

  Dario Papavassiliou

   A brief history

Schleicher’s tree model of Indo-European

   Phylogeny of the early Germanic languages

Evolutionary ideas and 'em
pirical' m

ethods 
179 

'e 
' 

\<a 

,jnbogerm
, Urjpradae 

Figure 2. A
. Schleicher, D

ie D
eutsche Sprache (Stuttgart, 1869), 2nd edn (lst edn, 1860), p. 82. 

C
ourtesy of the U

niversity of C
hicago Library. 

language. In this book, Schleicher explained that he had first read D
arw

in's ideas in H
. G

. 
Bronn's 1860 translation 

of the O
rigin, at the urging of his friend and colleague 

at the 
U

niversity of Jena, Ernst H
aeckel (1834-1919)."3 

(D
ie 

D
arw

insche Theorie w
as in fact 

subtitled 'O
ffenes 

Sendschreiben 
an H

errn D
r. Ernst H

ackel'.) 

23 A
. Schleicher, D

ie D
arw

insche Theorie und die Sprachw
issenschaft, W

eim
ar, 1863, 3; A

. Schleicher, 
D

arw
inism

 Tested by the Science of Language (tr. A
. V

. W
. Bikkers), London, 1869, 13-14. Subsequent references 

to D
ie D

arw
insche Theorie w

ill give the page num
bers in the G

erm
an edition first, w

ith the corresponding pages 
in the English edition given second. 

(German)

(Lithuanian)

(Slavic)
(Celtic)

(Italic)
(Albanian)

(Greek)
(Iranian)

(Indian)(Proto-Indo-European)

Wednesday, 3 September 2014



  Introduction

  Dario Papavassiliou

   A brief history

Schmidt’s wave model

   Phylogeny of the early Germanic languages
Wednesday, 3 September 2014



  Introduction

  Dario Papavassiliou

   A brief history

Schmidt’s wave model

   Phylogeny of the early Germanic languages
Wednesday, 3 September 2014



  Introduction

  Dario Papavassiliou

   A brief history

Schmidt’s wave model

   Phylogeny of the early Germanic languages
Wednesday, 3 September 2014



  Introduction

  Dario Papavassiliou

   A brief history

Schmidt’s wave model

   Phylogeny of the early Germanic languages
Wednesday, 3 September 2014



  Introduction

  Dario Papavassiliou

   A brief history

Schmidt’s wave model - The Balkan Sprachbund

   Phylogeny of the early Germanic languages

4 Indo-European language 
families (Greek, Romance, 
Albanian, Slavic) and the 
unrelated Turkish

Share many grammatical 
(and lexical) features not 
seen elsewhere

Turkish
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   A brief history

   Phylogeny of the early Germanic languages

Real linguistic evolution is driven by a combination of these processes

Analogous to genetic evolution: inheritance versus lateral transfer (in 
viruses)

Inheritance is dominant in sparsely populated regions, lateral transfer 
becomes important when there is much contact between unrelated 
languages

(Strong influence of technology: writing, printing, internet...)
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   Challenges facing evolutionary linguists

A (nearly) total absence of 
historical data!

   Phylogeny of the early Germanic languages

Analysis must depend on observation of modern (i.e. 
written) languages, plus (more recently) modelling
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   Methodology-Swadesh lists

Very common for analyses to be based on lexical data: Swadesh lists

List of 100 common words thought to be particularly resistant to 
replacement by loanwords

   Phylogeny of the early Germanic languages

German
(Meer, See)

English
(sea)

Italian
(mare)

Russian
(more)

Gaelic
(muir)

Norwegian
(sjø)

Dutch
(zee)

Greek
(thalassa)
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Swadesh lists allow for construction of a “genome” for languages

   Phylogeny of the early Germanic languages
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This is then used with similar machinery as used to compare amino 
acid or DNA sequences
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What if non-lexical data are used?
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Goths 
(C2nd - )

Saxons (C5th)

Angles (C5th)

Vikings (C8th)

Jutes (C5th)

“Germans” (BC)Franks (C4th)
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   Data set - the early Germanic languages

   Phylogeny of the early Germanic languages

Old English dialects
Anglian
West Saxon
Kentish

Gothic

Old Norse

Old 
Frisian

Old High 
German

Old 
Saxon
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Proto-Germanic

Norse
Gothic

High German
Low German

“in a broader sense”

Frisian

Saxon

English

German

Old Saxon

Dutch Low German

  Data
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   Data set - the early Germanic languages

   Phylogeny of the early Germanic languages

Old English dialects
Anglian
Kentish
West Saxon

Old Frisian
Old Norse
Gothic
Old High German
Old Saxon Schleicher’s classification

A classic data set...
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   Data set - source

   Phylogeny of the early Germanic languages

Old English and the Continental 
Germanic Languages: A Survey of 
Morphological and Phonological 
Interrelations
Hans Frede Nielsen
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   Data set - source
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Sample entry:
“The [Indo-European genitive singular] ō-stem ending 
-ãs is reflected in Gothic gibōs, ON skarar, OS geƀa 
and OHG geba, but not in OE giefe and OFris. ieve, 
where the original suffix has been analogically 
replaced by the [dative singular] ending ([reflecting 
Indo- European] -ãi)...”
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   Data set - interpretation as binary genome

   Phylogeny of the early Germanic languages

Sample entry:
“The [Indo-European genitive singular] ō-stem ending 
-ãs is reflected in Gothic gibōs, ON skarar, OS geƀa 
and OHG geba, but not in OE giefe and OFris. ieve, 
where the original suffix has been analogically 
replaced by the [dative singular] ending ([reflecting 
Indo- European] -ãi)...”

Reflects IEReflects IE

Gen Dat

OE Anglian 0 1
OE Kentish 0 1

OE W Saxon 0 1
O Frisian 0 1
O Saxon 1 0

O H German 1 0
O Norse 1 0
Gothic 1 0
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   Data set - interpretation as binary genome
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Reflects IEReflects IE

Gen Dat

OE Anglian 0 1
OE Kentish 0 1

OE W Saxon 0 1
O Frisian 0 1
O Saxon 1 0

O H German 1 0
O Norse 1 0
Gothic 1 0

Missing data marked with ?
Omitted data (duplicate entries, 
“insignificant/late”, too subtle) marked 
with - and disregarded

Results in a ‘genome’ of 531 characters 
for each language

Can be filtered into sub-genomes for 
different linguistic categories (nouns, 
verbs, numerals..., vowels, consonants) and 
(in principle) weighted
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   Statistics - traits per language

   Phylogeny of the early Germanic languages

A very basic indication of the 
completeness of the data

Gothic under-represented (due to a 
lack of texts in Gothic)

Old English dialects over-represented 
(due to subject of book)
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  Dario Papavassiliou

   Statistics - traits per language

   Phylogeny of the early Germanic languages

A very basic indication of the 
completeness of the data

Gothic under-represented (due to a 
lack of Gothic sources)

Old English dialects over-represented 
(due to subject of book)
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  Data
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   Statistics - languages per trait

   Phylogeny of the early Germanic languages
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Since book focuses on relationships 
between languages it does not discuss 
traits seen in only one language

Traits seen in all, or none, of the species 
are uninformative

Flat distribution → timescale of 
evolution is long
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   Statistics - distance matrix
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Gothic

Form distance matrix by 
counting differences in 
genome

Some relationships 
immediately apparent
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  Data
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   Minimal spanning tree

A very crude quantification of 
distances between languages

Construct a full graph with edge 
weights defined as distance

Delete edges with large weight to give 
minimal spanning tree

   Phylogeny of the early Germanic languages
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   Maximum parsimony

   Phylogeny of the early Germanic languages
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Minimises number of changes over tree 
to obtain observed genomes

Implemented using the Fitch algorithm

Repeated for each character in 
genome, then for each possible tree 
topology
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   Maximum parsimony

   Phylogeny of the early Germanic languages

Unless ancestral state is a leaf, the tree is unrooted

a

b c a cb a cb
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Unless ancestral state is a leaf, the tree is unrooted

a

b c a cb a cb

x

x x
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   Maximum parsimony

   Phylogeny of the early Germanic languages

Unless ancestral state is a leaf, the tree is unrooted

a

b c a cb a cb

x

x x

Gothic chosen as outgroup due to distance from other languages
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   Maximum parsimony

   Phylogeny of the early Germanic languages

OEAn
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94

99

Gives a sensible tree topology, but 
unrooted tree → cannot resolve EG/
WG/NG split!

Gives only information on topology, not 
chronology

?

?

?
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   Markov chain Monte Carlo - Dollo model

   Phylogeny of the early Germanic languages

Evolution modelled as a collection of Poisson processes:
Trait born with rate λ          ●
Trait dies with rate μ           ✖
Lineage splits with rate θ    ★

● ●

●

●
✖

✖

✖

★
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   Markov chain Monte Carlo - Dollo model

   Phylogeny of the early Germanic languages

Evolution modelled as a collection of Poisson processes:
Trait born with rate λ          ●
Trait dies with rate μ           ✖
Lineage splits with rate θ    ★

● ●

●

●
✖

✖

✖

★

Catastrophe occurs with rate ρ: each trait dies with P(κ), 
Poisson(κλ/μ) new traits born ▲ 

Equivalent to an edge lengthening

▲
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   Phylogeny of the early Germanic languages

Implemented using the TraitLab package*

MCMC scheme example moves

*Geoff Nicholls, Oxford

1310 A. J. Drummond et al.

What conclusions would a person in a state close to
ignorance reach from these data? The improper prior
we consider represents ignorance of a rather natural
kind. People using our methods will very likely want to
consider this particular state of knowledge, along with
others that are more representative of their own.

In our case ! and " are both scale parameters (for
time). The Jeffreys prior, f(z) # 1/z, z $ 0, invariant
under scale transformations z → az, and the uniform
prior on z $ 0 are candidates for fM(!) and f%("). If
fM # 1/!, f% # 1/", and fG(g |") and Pr{D|g, !} are as
given in Equations 1 and 5 then it may be shown that
the posterior density in Equation 6 is not finitely normal-
izable. We may nevertheless consider ratios of posterior
densities. But that means the only feasible Bayesian in-
ference, at least under the uniform, improper prior,
is exactly frequentist inference. We cannot treat the
parameters of interest as random variables. Suppose
fixed upper limits ! & !* and troot & t*root may be set, Figure 1.—Diagrams of two proposal mechanisms used to
along with a lower limit " ' "*. For the problems we modify tree topology during an MCMC analysis. (A) This move
use to illustrate our methods in examples, conservative is called the “narrow exchange” and is similar to a nearest

neighbor interchange. This move picks two subtrees at ran-limits of this kind determine a state of knowledge that
dom under the constraint that they have an aunt-niece rela-arises quite naturally. Moreover it may be shown that the
tionship; i.e., the parent of one is the grandparent of theposterior density is finitely normalizable under uniform other, but neither is parent of the other. Once picked these

priors on the restricted state space, even though the two subtrees are swapped so long as doing so does not require
prior on " remains improper. any modifications in node heights to maintain parent-child

order constraints. (B) This move is similar to one proposed
by Wilson and Balding (1998) and involves removing a
subtree and reattaching it on a new parent branch.MARKOV CHAIN MONTE CARLO FOR

EVOLUTIONARY PARAMETERS

The posterior density hM%G is a complicated function dard deviation of some estimate of (f(k), formed from
defined on a space of high dimension (between 30 and the MCMC output. Large lag autocorrelations should
40 in the examples that follow). We summarize the fall off to zero and remain within O()f) of zero, as dis-
information it contains by computing the expectations, cussed by Geyer (1992). Note that in the examples
over hM%G, of various statistics of interest. These expecta- section, these standards are not uniformly applied. The
tions are estimated using samples distributed according first two analyses pass all three checks. The last two
to hM%G. We use MCMC to gather the samples we need. analyses pass the first test. Here we are displaying the
MCMC and importance sampling are part of a family limitations of our MCMC algorithm. However, we be-
of Monte Carlo methods that may be used individually lieve the convergence is adequate for the points we
or in concert to solve the difficult integration problems make. In the appendix, Convergence and standard errors
that arise in population genetic inference. Earlier work describes the integrated autocorrelation time (IACT)
on this subject is cited in the Introduction. Figure 1 and effective sample size (ESS) measures used to test
shows a cartoon of two proposal mechanisms used. See the efficiency of our sampler.
the appendix for details of the proposal mechanisms The MCMC algorithm we used was implemented
and MCMC integration performed. twice, more or less independently, by A. Drummond,

As always in MCMC, it is not feasible to test for conver- in JAVA and by G. K. Nicholls in MatLab. This allowed us
gence to equilibrium. MCMC users are obliged to test to compare results and proved very useful in debugging
for stationarity as a proxy. We make three basic tests. some of the more complex proposal mechanism combi-
First, we check that results are independent of the start- nations. To minimize programming burden, one of our
ing state using 10 independent runs with very widely implementations (G. K. Nicholls in MatLab) was partial,
dispersed initializations. Second, we visually inspect out- allowing only fixed population size and fixed R to be
put traces. These should contain no obvious trend. compared. This is discussed more extensively in Imple-
Third, we check that the MCMC output contains a large mentation issues in the appendix.
number of segments that are effectively independent
of one another, independent, at least, in the distribution

EXTENSIONSdetermined empirically by the MCMC output. Let (f(k)
give the autocorrelation at lag k for some function f of Extending the framework of the Introduction and

MCMC for evolutionary parameters to include de-the MCMC output. Let )f denote the asymptotic stan-

Change tree topology

Wednesday, 3 September 2014
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Implemented using the TraitLab package*

MCMC scheme example moves

*Geoff Nicholls, Oxford

1310 A. J. Drummond et al.

What conclusions would a person in a state close to
ignorance reach from these data? The improper prior
we consider represents ignorance of a rather natural
kind. People using our methods will very likely want to
consider this particular state of knowledge, along with
others that are more representative of their own.

In our case ! and " are both scale parameters (for
time). The Jeffreys prior, f(z) # 1/z, z $ 0, invariant
under scale transformations z → az, and the uniform
prior on z $ 0 are candidates for fM(!) and f%("). If
fM # 1/!, f% # 1/", and fG(g |") and Pr{D|g, !} are as
given in Equations 1 and 5 then it may be shown that
the posterior density in Equation 6 is not finitely normal-
izable. We may nevertheless consider ratios of posterior
densities. But that means the only feasible Bayesian in-
ference, at least under the uniform, improper prior,
is exactly frequentist inference. We cannot treat the
parameters of interest as random variables. Suppose
fixed upper limits ! & !* and troot & t*root may be set, Figure 1.—Diagrams of two proposal mechanisms used to
along with a lower limit " ' "*. For the problems we modify tree topology during an MCMC analysis. (A) This move
use to illustrate our methods in examples, conservative is called the “narrow exchange” and is similar to a nearest

neighbor interchange. This move picks two subtrees at ran-limits of this kind determine a state of knowledge that
dom under the constraint that they have an aunt-niece rela-arises quite naturally. Moreover it may be shown that the
tionship; i.e., the parent of one is the grandparent of theposterior density is finitely normalizable under uniform other, but neither is parent of the other. Once picked these

priors on the restricted state space, even though the two subtrees are swapped so long as doing so does not require
prior on " remains improper. any modifications in node heights to maintain parent-child

order constraints. (B) This move is similar to one proposed
by Wilson and Balding (1998) and involves removing a
subtree and reattaching it on a new parent branch.MARKOV CHAIN MONTE CARLO FOR

EVOLUTIONARY PARAMETERS

The posterior density hM%G is a complicated function dard deviation of some estimate of (f(k), formed from
defined on a space of high dimension (between 30 and the MCMC output. Large lag autocorrelations should
40 in the examples that follow). We summarize the fall off to zero and remain within O()f) of zero, as dis-
information it contains by computing the expectations, cussed by Geyer (1992). Note that in the examples
over hM%G, of various statistics of interest. These expecta- section, these standards are not uniformly applied. The
tions are estimated using samples distributed according first two analyses pass all three checks. The last two
to hM%G. We use MCMC to gather the samples we need. analyses pass the first test. Here we are displaying the
MCMC and importance sampling are part of a family limitations of our MCMC algorithm. However, we be-
of Monte Carlo methods that may be used individually lieve the convergence is adequate for the points we
or in concert to solve the difficult integration problems make. In the appendix, Convergence and standard errors
that arise in population genetic inference. Earlier work describes the integrated autocorrelation time (IACT)
on this subject is cited in the Introduction. Figure 1 and effective sample size (ESS) measures used to test
shows a cartoon of two proposal mechanisms used. See the efficiency of our sampler.
the appendix for details of the proposal mechanisms The MCMC algorithm we used was implemented
and MCMC integration performed. twice, more or less independently, by A. Drummond,

As always in MCMC, it is not feasible to test for conver- in JAVA and by G. K. Nicholls in MatLab. This allowed us
gence to equilibrium. MCMC users are obliged to test to compare results and proved very useful in debugging
for stationarity as a proxy. We make three basic tests. some of the more complex proposal mechanism combi-
First, we check that results are independent of the start- nations. To minimize programming burden, one of our
ing state using 10 independent runs with very widely implementations (G. K. Nicholls in MatLab) was partial,
dispersed initializations. Second, we visually inspect out- allowing only fixed population size and fixed R to be
put traces. These should contain no obvious trend. compared. This is discussed more extensively in Imple-
Third, we check that the MCMC output contains a large mentation issues in the appendix.
number of segments that are effectively independent
of one another, independent, at least, in the distribution

EXTENSIONSdetermined empirically by the MCMC output. Let (f(k)
give the autocorrelation at lag k for some function f of Extending the framework of the Introduction and

MCMC for evolutionary parameters to include de-the MCMC output. Let )f denote the asymptotic stan-

Change tree topology

Vary model parameters
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Implemented using the TraitLab package*

MCMC scheme example moves

*Geoff Nicholls, Oxford

1310 A. J. Drummond et al.

What conclusions would a person in a state close to
ignorance reach from these data? The improper prior
we consider represents ignorance of a rather natural
kind. People using our methods will very likely want to
consider this particular state of knowledge, along with
others that are more representative of their own.

In our case ! and " are both scale parameters (for
time). The Jeffreys prior, f(z) # 1/z, z $ 0, invariant
under scale transformations z → az, and the uniform
prior on z $ 0 are candidates for fM(!) and f%("). If
fM # 1/!, f% # 1/", and fG(g |") and Pr{D|g, !} are as
given in Equations 1 and 5 then it may be shown that
the posterior density in Equation 6 is not finitely normal-
izable. We may nevertheless consider ratios of posterior
densities. But that means the only feasible Bayesian in-
ference, at least under the uniform, improper prior,
is exactly frequentist inference. We cannot treat the
parameters of interest as random variables. Suppose
fixed upper limits ! & !* and troot & t*root may be set, Figure 1.—Diagrams of two proposal mechanisms used to
along with a lower limit " ' "*. For the problems we modify tree topology during an MCMC analysis. (A) This move
use to illustrate our methods in examples, conservative is called the “narrow exchange” and is similar to a nearest

neighbor interchange. This move picks two subtrees at ran-limits of this kind determine a state of knowledge that
dom under the constraint that they have an aunt-niece rela-arises quite naturally. Moreover it may be shown that the
tionship; i.e., the parent of one is the grandparent of theposterior density is finitely normalizable under uniform other, but neither is parent of the other. Once picked these

priors on the restricted state space, even though the two subtrees are swapped so long as doing so does not require
prior on " remains improper. any modifications in node heights to maintain parent-child

order constraints. (B) This move is similar to one proposed
by Wilson and Balding (1998) and involves removing a
subtree and reattaching it on a new parent branch.MARKOV CHAIN MONTE CARLO FOR

EVOLUTIONARY PARAMETERS

The posterior density hM%G is a complicated function dard deviation of some estimate of (f(k), formed from
defined on a space of high dimension (between 30 and the MCMC output. Large lag autocorrelations should
40 in the examples that follow). We summarize the fall off to zero and remain within O()f) of zero, as dis-
information it contains by computing the expectations, cussed by Geyer (1992). Note that in the examples
over hM%G, of various statistics of interest. These expecta- section, these standards are not uniformly applied. The
tions are estimated using samples distributed according first two analyses pass all three checks. The last two
to hM%G. We use MCMC to gather the samples we need. analyses pass the first test. Here we are displaying the
MCMC and importance sampling are part of a family limitations of our MCMC algorithm. However, we be-
of Monte Carlo methods that may be used individually lieve the convergence is adequate for the points we
or in concert to solve the difficult integration problems make. In the appendix, Convergence and standard errors
that arise in population genetic inference. Earlier work describes the integrated autocorrelation time (IACT)
on this subject is cited in the Introduction. Figure 1 and effective sample size (ESS) measures used to test
shows a cartoon of two proposal mechanisms used. See the efficiency of our sampler.
the appendix for details of the proposal mechanisms The MCMC algorithm we used was implemented
and MCMC integration performed. twice, more or less independently, by A. Drummond,

As always in MCMC, it is not feasible to test for conver- in JAVA and by G. K. Nicholls in MatLab. This allowed us
gence to equilibrium. MCMC users are obliged to test to compare results and proved very useful in debugging
for stationarity as a proxy. We make three basic tests. some of the more complex proposal mechanism combi-
First, we check that results are independent of the start- nations. To minimize programming burden, one of our
ing state using 10 independent runs with very widely implementations (G. K. Nicholls in MatLab) was partial,
dispersed initializations. Second, we visually inspect out- allowing only fixed population size and fixed R to be
put traces. These should contain no obvious trend. compared. This is discussed more extensively in Imple-
Third, we check that the MCMC output contains a large mentation issues in the appendix.
number of segments that are effectively independent
of one another, independent, at least, in the distribution

EXTENSIONSdetermined empirically by the MCMC output. Let (f(k)
give the autocorrelation at lag k for some function f of Extending the framework of the Introduction and

MCMC for evolutionary parameters to include de-the MCMC output. Let )f denote the asymptotic stan-

Change tree topology

Vary model parameters

Vary locations of catastrophes
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1,000,000 steps performed

First 100,000 discarded (equilibration)

Remaining sampled every 100 steps

Samples averaged to give a consensus tree
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   Consensus tree

   Phylogeny of the early Germanic languages

Given a set of N trees, a consensus tree representing an 
‘average’ topology is constructed:

Root node Most common 
split

...

...
x%
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Obtain same tree (topologically) as 
from parsimony

Chronological resolution groups NG 
with WG

Very good consensus between samples
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Anglian

West Saxon Kentish
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Old Saxon

Old High 
German

Old Norse
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Old English

WG

NG

EG

Proto-Germanic

We obtain the following phylogeny...
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Compares (mostly) favourably to Schleicher’s classification

as well as quantitative (lexical) analyses by others
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...criterion to determine breakdown of phylogenic model?
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