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Random Geometric Graphs and Spatially Embedded
Networks

The model...

I Node positions are random

I Existence of an edge (i , j) depends on distance between nodes
i and j

I Notion of distance implies embedding in some space (e.g.,
Euclidean)

Applications...

I Human/animal interactions

I Nano processes (e.g., carbon nanotubes on a polymer
substrate)

I Wireless communication networks



Erdős-Rényi Graph vs Random Geometric Graph

ER Graphs

I Edge probability ℘

I Independent of embedding

RG Graphs

I Edge probability ℘(si ,j)

I Distribution of si ,j important



Graph Entropy

Consider a graph G = (V, E) to be a set of vertices (nodes) and a
set of edges (links).

I
(n
2

)
= n(n − 1)/2 possible edge configurations

I 2n(n−1)/2 possible graphs without considering node locations

The entropy of G is a measure of disorder or the amount of
information contained in the graph distribution.

H(G ) = E[− log(P(G ))]

* Logarithms are base e.



ER Graph Entropy

For an ER graph, all edges occur independently with probability ℘.
To calculate entropy...

I Map G to n(n − 1)/2 Bernoulli
variables X1, . . . ,Xn(n−1)/2

I Independence of {Xi} implies

H(G ) = H(X1, . . . ,Xn(n−1)/2) =
∑
i

H(Xi ) =

(
n

2

)
H(℘)

I Entropy of single edge is

H(℘) = −℘ log℘− (1− ℘) log(1− ℘)



ER Graph Entropy
Examples

Figure : Entropy of ER graph with n = 15 nodes.



RG Graph Entropy

For an RG graph, edge (i , j) occurs with probability ℘i ,j , which
depends on the distance si ,j = ‖ri − rj‖. Consider conditional
entropy...

H(G |S) = E[H(G |s1,2, . . . , sn−1,n)]

≤
∑
i<j

E[H(Xi ,j |si ,j)] (independence bound)

=

(
n

2

)
E[H(X |s)]

≤
(
n

2

)
H(℘) (Jensen’s inequality)

where
℘ := E[℘(si ,j)].



Pair Connection Function

Interesting properties arise from the distribution of the pair
distance and the pair connection function. Let...

℘(s) = exp(−(s/s0)η)

I Models Rayleigh fading in wireless networks

I Versatility offered by parameter η:
probabilistic to deterministic

⇒ ℘ =

∫ D

0
f (s) exp(−(s/s0)η) ds



Uniform Node Distributions in a Compact Domain

In d dimensions, the set covariance of a convex set K is given by

cK(s) =

∫
Rd

1K(x)1K(x− s)dx, s ∈ Rd

where 1K(x) is the indicator function for x ∈ K.

The isotropised set covariance is given by

cK(s) =

∫
Sd−1

cK(su)du, s ≥ 0

where u is a vector denoting a point on the unit sphere Sd−1.

The pair distance probability density function is given by

f (s) =
2πd/2sd−1cK(s)

Γ(d/2) vol(K)2
.
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Entropy vs Connection Range s0

Figure : Entropy of RG graph with n = 5 nodes and pair connection
functions with typical range s0 for a unit square. Solid line: upper bound.
Markers: numerical simulations.



Uniform Node Distributions in a 2D Compact Domain
Small Typical Connection Range

Consider a compact
domain K2 with area a2,
boundary length l2 and
small typical connection
range s0 � πa2/l2 � D.

s0

K2

≈ l2s0

I Pair distance distribution

I Soft pair connection
probability

I Hard pair connection
probability

f (s) =
2πs

a2

(
1− l2s

πa2

)
℘ =

2πs20Γ(2/η)

ηa2

(
1− l2s0

πa2

Γ(3/η)

Γ(2/η)

)
℘ =

πs20
a2

(
1− 2l2s0

3πa2

)



Entropy for Small s0

Let u2 = 2πΓ(2/η)/(ηa2) denote the fractional area of a unit soft
disc. For s0 → 0, we have

H(G |S) ≤
(
n

2

)(
2u2 log

(
1

s0

)
s20

+ u2(1− log u2)s20 + O(s30 log s0)

)

I For fixed s0, the bound increases with n.

I For fixed n, the bound decreases with s0 (toward a completely
disconnected graph).



Entropy for Small s0

What about s0 = g(n)?

Fact
For typical connection distances that decay according to the
relation

s20 log

(
1

s0

)
= o

(
1

n2

)
the entropy H(G |S)→ 0 as n→∞.



An Entropy Limit for Small s0

Fact
The upper bound on the entropy of a graph in K2 will tend to a
limit ν > 0 as n→∞ if

s0(n) = exp

(
1

2
Wm

(
− 2ν

u2n2

))
=

√
ν

n
√
u2 log n

(
1 + O

(
1

log n

))
where Wm(x) is the lower branch (−1/e ≤ x < 0 and Wm ≤ −1)
of the solution to x = W expW.



Entropy vs Number of Nodes n

Figure : Upper bound on the entropy of an RG graph in a unit square

with s0 = exp
(

1
2Wm

(
− 2ν

u2n2

))
. Solid line: theory. Dashed line: limit.



Connectivity for Small s0

Fact
The probability that a graph in K2 is completely disconnected is
well approximated by

P = (1− ℘)n(n−1)/2.

Thus, for s0 → 0 and n→∞, a graph is almost surely completely
disconnected if

s0 = o

(
1

n

)
.

The probability of a completely disconnected graph will tend to a
limit ϕ ∈ (0, 1) if

s0(n) =
1

n

√
2

u2
log

(
1

ϕ

)



Connectivity vs Entropy for Small s0

Interesting Fact

Letting s0 tend to zero such that the upper bound on H(G |S)
tends to ν > 0 yields

P ∼ 1− ν

2 log n
.

I.e., typical connection distances that yield a positive limit on the
entropy bound result in almost surely completely disconnected
graphs (albeit with a slow convergence).



Arbitrary Node Configurations for s0 � D

For the hard disc model, the graph G is complete, so
H(G |S) = H(G ) = 0.

For the soft model (i.e., η <∞)

℘ = 1− E[sη]

sη0
+ O

(
1

s2η0

)

provided the ηth, 2ηth, . . . moments exist. The conditional
entropy is thus bounded by

H(G |S) ≤
(
n

2

)
ηE[sη] log s0

sη0
+ O

(
1

sη0

)
, η <∞



Room for Improvement...

I Consider d > 2; all small s0 results generalise

I More to consider for s0 � D

I Exact calculations (difficult)

I Strengthen the bound

I Consider other pair connection functions

I Explicit calculations for specific bounding geometries

I Maximum entropy points

I Structural entropy

I Applications (e.g., routing/forwarding tables, protocol design)


