Entropy of Random Geometric Graphs

Justin P. Coon

with thanks to N. Warsi, O. Georgiou and C. P. Dettmann

21 September, 2015

% Oriel College &) OXFORD

)




Random Geometric Graphs and Spatially Embedded
Networks

The model...
» Node positions are random
» Existence of an edge (/,/) depends on distance between nodes
i and j
» Notion of distance implies embedding in some space (e.g.,
Euclidean)

Applications...
» Human/animal interactions

» Nano processes (e.g., carbon nanotubes on a polymer
substrate)

» Wireless communication networks



Erdés-Rényi Graph vs Random Geometric Graph

RG Graphs

> Edge probability o » Edge probability o(s; ;)
> Independent of embedding » Distribution of s; j important



Graph Entropy

Consider a graph G = (V, ) to be a set of vertices (nodes) and a
set of edges (links).

» (3) = n(n—1)/2 possible edge configurations

» 27(n=1)/2 possible graphs without considering node locations

The entropy of G is a measure of disorder or the amount of
information contained in the graph distribution.

H(G) = E[- log(P(G))]

* Logarithms are base e.



ER Graph Entropy

For an ER graph, all edges occur independently with probability .
To calculate entropy...

» Map G to n(n—1)/2 Bernoulli ) 110100010
variables X, ..., Xy(n-1)/2

» Independence of {X;} implies
H(G) = H(X1, ..., Xa(n-1)/2) ZH < >H(p)

» Entropy of single edge is

H(p) = —plogp — (1 — p) log(1 — p)



ER Graph Entropy

Examples
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Figure : Entropy of ER graph with n = 15 nodes.



RG Graph Entropy

For an RG graph, edge (/,/) occurs with probability ; j, which
depends on the distance s; ; = ||r; — rj||. Consider conditional
entropy...

H(G|5) = E[H(G|SL2, e ,5,,,17,,)]

< ZE[H(XU|5IJ)] (independence bound)
= (5)Btrcxis)
< <I27> H(®) (Jensen's inequality)

where



Pair Connection Function

Interesting properties arise from the distribution of the pair
distance and the pair connection function. Let...

o(s) = exp(—(s/0)") o

» Models Rayleigh fading in wireless networks

» Versatility offered by parameter 7: T T
probabilistic to deterministic 9

D
== [ ) en(-(s/%)) ds ;




Uniform Node Distributions in a Compact Domain

In d dimensions, the set covariance of a convex set K is given by
ck(s) = / 1ic(x)1x(x —s) dx, sc R?
Rd

where 1x(x) is the indicator function for x € K.
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The isotropised set covariance is given by
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Sd—1

where u is a vector denoting a point on the unit sphere S9~1.



Uniform Node Distributions in a Compact Domain

In d dimensions, the set covariance of a convex set K is given by
ck(s) = / 1ic(x)1x(x —s) dx, sc R?
Rd

where 1x(x) is the indicator function for x € K.

The isotropised set covariance is given by
Ck(s) = / c(su) du, s>0
Sd—1

where u is a vector denoting a point on the unit sphere S9~1.

The pair distance probability density function is given by

2792597 g(s)
fls) = F(d/2)vo|(’ICC)2 '




Entropy vs Connection Range sy
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Figure : Entropy of RG graph with n = 5 nodes and pair connection
functions with typical range sy for a unit square. Solid line: upper bound.
Markers: numerical simulations.



Uniform Node Distributions in a 2D Compact Domain

Small Typical Connection Range

Consider a compact
domain Co with area a»,
boundary length , and
small typical connection
range sop < map/h < D.

2 /

> Pair distance distribution  f(s) = (1 _ ks )
213l (2 hso T

» Soft pair connection 7= L(/n) (1 _ 2% (3/77)>

probability , naz maz [(2/n)
2}
» Hard pair connection 3] 0 (1 -3 250>
probability a2 maz




Entropy for Small s

Let up = 27T(2/n)/(naz2) denote the fractional area of a unit soft
disc. For sp — 0, we have

H(G|S) < <'2’) <2U2 log (;) s2

+ up(1 — log up)s5 + O(sp log 50))

» For fixed sp, the bound increases with n.

» For fixed n, the bound decreases with sy (toward a completely
disconnected graph).



Entropy for Small s

What about sp = g(n)?

Fact
For typical connection distances that decay according to the

relation
s2lo l =o0 i
0 108 % - n2

the entropy H(G|S) — 0 as n — oo.



An Entropy Limit for Small sy

Fact
The upper bound on the entropy of a graph in Ko will tend to a
limit v >0 as n— oo if

o) = o0 (1 (- 2))

= i (1 (g3

where Wi, (x) is the lower branch (—=1/e < x < 0 and W, < —1)
of the solution to x = Wexp W.




Entropy vs Number of Nodes n
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Figure : Upper bound on the entropy of an RG graph in a unit square
with 5o = exp (3Win (2% ) ). Solid line: theory. Dashed line: limit.



Connectivity for Small sy

Fact

The probability that a graph in Ko is completely disconnected is
well approximated by

P=(1- @n(n—l)/;

Thus, for sy — 0 and n — oo, a graph is almost surely completely

disconnected if .
So =0 <> .
n

The probability of a completely disconnected graph will tend to a
limit ¢ € (0,1) if



Connectivity vs Entropy for Small s

Interesting Fact
Letting sy tend to zero such that the upper bound on H(G|S)
tends to v > 0 yields

v

P~1-— .
2logn

l.e., typical connection distances that yield a positive limit on the

entropy bound result in almost surely completely disconnected

graphs (albeit with a slow convergence).



Arbitrary Node Configurations for so > D

For the hard disc model, the graph G is complete, so
H(G|S) = H(G) = 0.

For the soft model (i.e., n < c0)

_ E[s"] 1
p1- 2 +o<s§n>

provided the nth, 2nth, ... moments exist. The conditional
entropy is thus bounded by

E[s"] | 1
H(G|S) < (”)77[5']7fg5"+o<,7>, N < oo
2 So So




Room for Improvement...

» Consider d > 2; all small sy results generalise

» More to consider for sg > D

» Exact calculations (difficult)

» Strengthen the bound

» Consider other pair connection functions

» Explicit calculations for specific bounding geometries

» Maximum entropy points

» Structural entropy

» Applications (e.g., routing/forwarding tables, protocol design)



