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Random geometric graphs

Introduced in 1961 by E. N. Gilbert:

Recently random graphs have been studied as models of communica-
tions networks. Points (vertices) of a graph represent stations; lines
of a graph represent two-way channels. . . . To construct a random
plane network, first pick points from the infinite plane by a Poisson
process with density D points per unit area. Next join each pair of
points by a line if the pair is separated by distance less than R.

Then:

Communications networks Many authors, since 1980s

Connectivity threshold Penrose (1997), Gupta & Kumar (1999)

Books:

Meester & Roy (1996) Continuum percolation

Penrose (2003) Random geometric graphs

Franceschetti & Meester (2008) Random networks for
communication

Walters (2011) Random geometric graphs (survey article)

Haenggi (2012) Stochastic geometry for wireless networks



Network considerations

Mesh architectures Multihop connections rather than direct to a base sta-
tion: Reduces power requirements, interference, single points of failure.

Random node locations In many applications (sensor, vehicular, swarm robotics,
disaster recovery, . . .) device locations are unplanned and/or mobile.

Network characteristics Full connectivity, k-connectivity (resilience; OG,
CPD and JPC, EPL 2013), betweenness centrality (importance, over-
load; A.P. Giles, OG and CPD, ICC 2015), algebraic connectivity (syn-
chronisation).

Useful extensions:

Random connection models Extra randomness: Form a link with (iid) prob-
ability H(r) ∈ [0,1], a function of the mutual distance r.

Line of sight condition Impenetrable and/or reflecting boundaries: Partic-
ular relevance to networks using millimetre waves.

Etc : Interference (later) anisotropic connections (OG, CPD and JPC, TWC
2014), heterogeneous networks, mobility, dynamic networks, trust...



Example: A triangle

Isolated nodes occur mostly near the corners...



Dependence on density and geometry

We see two main transitions as density increases:

Percolation Formation of a cluster comparable to system size:
Largely independent of geometry.

Connectivity All nodes connected in multi-hop fashion:
Strongly dependent on geometry.

What is the full connection probability as a function of density and geometry?



Previous results

Mathematically rigorous results are in the limit of many nodes, taking appro-
priate scaling for r0, L and/or ρ.

For the random geometric graph in dimension d ≥ 2, it was shown by Penrose,
and by Gupta & Kumar, that the r0 threshold for connectivity is almost
always the same as for isolated nodes.

In turn, isolated nodes are local events, so described by a limiting Poisson
process: The probability of a node having degree k is given by

P (k) =
Kk

k!
e−K

where K is the mean degree, equal to ρπr2
0 for the 2D RGG. This leads to

Pfc ≈ exp
[
−ρV e−ρπr2

0

]
where V is the “volume” (ie area) of the domain.

At fixed probability, V needs to increase exponentially with ρ



Random connection models

The connection function is the complement of the outage probability,

H(r) = P(log2(1 + SNR |h|2) > R0)

neglecting interference, with SNR ∝ r−η, path loss exponent η ∈ [2,6], rate
R0. Simplest is Rayleigh fading (diffuse signal), for which the channel gain
|h|2 is exponentially distributed, giving

H(r) = exp[−(r/r0)η]

Similar, though more involved: MIMO, Rician (specular plus diffuse), . . .
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Connectivity in the random connection model

The formula generalises naturally

Pfc ≈ exp

[
−
∫
ρe
−ρ
∫
H(r12)dr1dr2

]
where ρ is the density, and the integrals are over the domain V ⊂ Rd. It has
been proved under specific conditions (see Penrose, 2015):

• In the limit of infinitely many nodes

• Isolated nodes are approximately Poisson for a large class of connection
functions (not annulus).

• Connectivity is equivalent to absence of isolated nodes for a smaller class
(in particular, compact support).

• The domain is a d-dimensional cube.

We assume the above expression provides a useful approximation Pfc when
these assumptions are relaxed, ie finite density, exponentially decaying con-
nection functions, general convex domains in two or three dimensions.

Open problem: 1D networks with the random connection model.



Convex polyhedra, etc

For large ρ, we expect the domination by the regions of small connectivity
mass

M(r2) =

∫
H(r12)dr1

Exactly on the boundary, this is given by

MB = Hd−1ωB

where

Hm =

∫ ∞
0

H(r)rmdr

is the mth moment, and ωB is the (solid) angle associated with the boundary
component B, eg π/2 for a right angled corner, π for an edge. We analyse
the vicinity of boundaries more carefully to obtain. . .



General formula

Pfc ≈ exp

[
−
∑
B

ρ1−iBGBVBe
−ρωBHd−1

]
where iB is the boundary codimension, VB is its d− i dimensional volume, and
GB is the geometrical factor

GB i = 0 i = 1 i = 2 i = 3
d = 2 1 1

2H0

1
H2

0 sinω

d = 3 1 1
2πH1

1
π2H2

1 sin(ω/2)
4

π2H3
1ω sinω

where the 3D corner has a right angle.

Curved boundaries? To leading order, curvature can be neglected.



Example: A square

The previous formula gives

1− Pfc ≈ L2ρe−πρ +
4L
√
π
e−

πρ

2 +
16

πρ
e−

πρ

4



Higher order terms

Expanding around the boundary points yields higher terms as well. In 2D:

Bulk

ρAe−2πρH1

Edge

Le−ρπH1

[
1

2H0
−

H̃−2

8ρ2H4
0

+ . . .

]
Corner, angle ω

e−ρωH1

[
1

ρH2
0 sinω

−
H(0)(2 cosω + 1)

ρ2H4
0 sin2 ω

−
2H̃−2

ρ3H5
0 sinω

+ . . .

]

where H̃−2 is a regularised negative second moment, equal to∫ ∞
0

H ′(r)

r
dr +

∑
k

H(r+
k )−H(r−k )

rk

if the integral converges, where k sums over discontinuities.

There are similar results for 3D.



Phase diagram

Testing convergence of
1− Pfc∑

B . . .



Non-convex geometries

These ideas can be extended to non-convex domains...

Keyholes: OG, CPD and JPC, ISWCS 2013

Obstacles and curved boundaries: A. P. Giles, OG and CPD, arxiv:1502.05440

Reflections: OG, M. Z. Bocus, M. R. Rahman, CPD, JPC,
IEEE Commun Lett 2015

Fractal boundaries: CPD, OG and JPC, ISWCS 2015


