Border effects in ad-hoc networks

Carl P. Dettmann (University of Bristol)

with Justin P. Coon (Oxford) and Orestis Georgiou (Toshiba)

Outline

- 1. Random geometric graph model of wireless networks
- 2. Connectivity in convex domains J Stat Phys **147**, 758-778 (2012); arxiv:1411.3617
- 3. Non-convex domains

Random geometric graphs

Introduced in 1961 by E. N. Gilbert:

Recently random graphs have been studied as models of communications networks. Points (vertices) of a graph represent stations; lines of a graph represent two-way channels. ... To construct a random plane network, first pick points from the infinite plane by a Poisson process with density D points per unit area. Next join each pair of points by a line if the pair is separated by distance less than R.

Then:

Communications networks Many authors, since 1980s Connectivity threshold Penrose (1997), Gupta & Kumar (1999) Books:

Meester & Roy (1996) Continuum percolation

Penrose (2003) Random geometric graphs

Franceschetti & Meester (2008) Random networks for communication

Walters (2011) Random geometric graphs (survey article)

Haenggi (2012) Stochastic geometry for wireless networks

Network considerations

Mesh architectures Multihop connections rather than direct to a base station: Reduces power requirements, interference, single points of failure.

- **Random node locations** In many applications (sensor, vehicular, swarm robotics, disaster recovery, ...) device locations are unplanned and/or mobile.
- Network characteristics Full connectivity, k-connectivity (resilience; OG, CPD and JPC, EPL 2013), betweenness centrality (importance, overload; A.P. Giles, OG and CPD, ICC 2015), algebraic connectivity (synchronisation).

Useful extensions:

- **Random connection models** Extra randomness: Form a link with (iid) probability $H(r) \in [0, 1]$, a function of the mutual distance r.
- Line of sight condition Impenetrable and/or reflecting boundaries: Particular relevance to networks using millimetre waves.
- **Etc** : Interference (later) anisotropic connections (OG, CPD and JPC, TWC 2014), heterogeneous networks, mobility, dynamic networks, trust...

Isolated nodes occur mostly near the corners...

Dependence on density and geometry

We see two main transitions as density increases:

Percolation Formation of a cluster comparable to system size: Largely independent of geometry.

Connectivity All nodes connected in multi-hop fashion: Strongly dependent on geometry.

What is the full connection probability as a function of density and geometry?

Previous results

Mathematically rigorous results are in the limit of many nodes, taking appropriate scaling for r_0 , L and/or ρ .

For the random geometric graph in dimension $d \ge 2$, it was shown by Penrose, and by Gupta & Kumar, that the r_0 threshold for **connectivity** is almost always the same as for **isolated nodes**.

In turn, isolated nodes are local events, so described by a limiting Poisson process: The probability of a node having degree k is given by

$$P(k) = \frac{\mathcal{K}^k}{k!} e^{-\mathcal{K}}$$

where \mathcal{K} is the mean degree, equal to $\rho \pi r_0^2$ for the 2D RGG. This leads to

$$P_{fc} \approx \exp\left[-\rho V e^{-\rho \pi r_0^2}\right]$$

where V is the "volume" (ie area) of the domain.

At fixed probability, V needs to increase exponentially with ρ

Random connection models

The connection function is the complement of the outage probability,

 $H(r) = \mathbb{P}(\log_2(1 + SNR |h|^2) > R_0)$

neglecting interference, with $SNR \propto r^{-\eta}$, path loss exponent $\eta \in [2,6]$, rate R_0 . Simplest is Rayleigh fading (diffuse signal), for which the channel gain $|h|^2$ is exponentially distributed, giving

$$H(r) = \exp[-(r/r_0)^{\eta}]$$

Similar, though more involved: MIMO, Rician (specular plus diffuse), ...

Connectivity in the random connection model

The formula generalises naturally

$$P_{fc} \approx \exp\left[-\int \rho e^{-\rho \int H(r_{12})d\mathbf{r}_1} d\mathbf{r}_2\right]$$

where ρ is the density, and the integrals are over the domain $\mathcal{V} \subset \mathbb{R}^d$. It has been proved under specific conditions (see Penrose, 2015):

- In the limit of infinitely many nodes
- Isolated nodes are approximately Poisson for a large class of connection functions (not annulus).
- Connectivity is equivalent to absence of isolated nodes for a smaller class (in particular, compact support).
- The domain is a *d*-dimensional cube.

We assume the above expression provides a useful approximation P_{fc} when these assumptions are relaxed, ie finite density, exponentially decaying connection functions, general convex domains in two or three dimensions.

Open problem: 1D networks with the random connection model.

Convex polyhedra, etc

For large $\rho,$ we expect the domination by the regions of small connectivity mass

$$M(\mathbf{r}_2) = \int H(r_{12}) d\mathbf{r}_1$$

Exactly on the boundary, this is given by

$$M_B = H_{d-1}\omega_B$$

where

$$H_m = \int_0^\infty H(r) r^m dr$$

is the *m*th moment, and ω_B is the (solid) angle associated with the boundary component *B*, eg $\pi/2$ for a right angled corner, π for an edge. We analyse the vicinity of boundaries more carefully to obtain...

General formula

$$P_{fc} pprox \exp\left[-\sum_{B}
ho^{1-i_{B}} G_{B} V_{B} e^{-
ho\omega_{B} H_{d-1}}
ight]$$

where i_B is the boundary codimension, V_B is its d-i dimensional volume, and G_B is the geometrical factor

G_B	i = 0	i = 1	i = 2	i = 3
d = 2	1	$\frac{1}{2H_0}$	$\frac{1}{H_2^2 \sin \omega}$	
d = 3	1	$\frac{1}{2\pi H_1}$	$\frac{1}{\pi^2 H_1^2 \sin(\omega/2)}$	$rac{4}{\pi^2 H_1^3 \omega \sin \omega}$

where the 3D corner has a right angle.

Curved boundaries? To leading order, curvature can be neglected.

Example: A square

The previous formula gives

$$1 - P_{fc} \approx L^2 \rho e^{-\pi\rho} + \frac{4L}{\sqrt{\pi}} e^{-\frac{\pi\rho}{2}} + \frac{16}{\pi\rho} e^{-\frac{\pi\rho}{4}}$$

Higher order terms

Expanding around the boundary points yields higher terms as well. In 2D: **Bulk**

 $ho A e^{-2\pi
ho H_1}$

Edge

$$Le^{-\rho\pi H_1}\left[\frac{1}{2H_0}-\frac{\tilde{H}_{-2}}{8\rho^2 H_0^4}+\ldots\right]$$

Corner, angle ω

$$e^{-\rho\omega H_1} \left[\frac{1}{\rho H_0^2 \sin \omega} - \frac{H(0)(2\cos \omega + 1)}{\rho^2 H_0^4 \sin^2 \omega} - \frac{2\tilde{H}_{-2}}{\rho^3 H_0^5 \sin \omega} + \dots \right]$$

where \tilde{H}_{-2} is a regularised negative second moment, equal to

$$\int_{0}^{\infty} \frac{H'(r)}{r} dr + \sum_{k} \frac{H(r_{k}^{+}) - H(r_{k}^{-})}{r_{k}}$$

if the integral converges, where k sums over discontinuities.

There are similar results for 3D.

Phase diagram

Testing convergence of

$$\frac{1-P_{fc}}{\sum_B \cdots}$$

Non-convex geometries

These ideas can be extended to non-convex domains...

Keyholes: OG, CPD and JPC, ISWCS 2013

Obstacles and curved boundaries: A. P. Giles, OG and CPD, arxiv:1502.05440

Reflections: OG, M. Z. Bocus, M. R. Rahman, CPD, JPC, IEEE Commun Lett 2015

Fractal boundaries: CPD, OG and JPC, ISWCS 2015

