
Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

A network-based integer program for physical cell
identifier assignment in 4G

Jamie Fairbrother1 Adam Letchford2,
in collaboration with Keith Briggs

1STOR-i Centre for Doctoral Training, Lancaster University

2Department of Management Science, Lancaster University

MoN15, Bath, 23rd September 2016

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Introduction

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Femtocells

Femtocells:

• Femtocells are small home radio devices
which use the LTE (4G) network

• Supplement for home WiFi networks

• Serve BT roaming users to provide faster
and more reliable wireless coverage

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Femtocells

Femtocells:

• Femtocells are small home radio devices
which use the LTE (4G) network

• Supplement for home WiFi networks

• Serve BT roaming users to provide faster
and more reliable wireless coverage

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Femtocells

Femtocells:

• Femtocells are small home radio devices
which use the LTE (4G) network

• Supplement for home WiFi networks

• Serve BT roaming users to provide faster
and more reliable wireless coverage

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Physical cell ID (PCI) assignment

• Each cell is assigned a Physical Cell ID (PCI) between 1 and
504

• Neighbouring cells must not have the same PCI

• It is desirable for neighbouring devices to have PCIs different
up to modulo 3

Problem:

• Cells are currently assigned a PCI using a distributed dynamic
heuristic

• It is not known how well this performs in practice

• We wish to assess performance via mathematical optimization

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Physical cell ID (PCI) assignment

• Each cell is assigned a Physical Cell ID (PCI) between 1 and
504

• Neighbouring cells must not have the same PCI

• It is desirable for neighbouring devices to have PCIs different
up to modulo 3

Problem:

• Cells are currently assigned a PCI using a distributed dynamic
heuristic

• It is not known how well this performs in practice

• We wish to assess performance via mathematical optimization

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Physical cell ID (PCI) assignment

• Each cell is assigned a Physical Cell ID (PCI) between 1 and
504

• Neighbouring cells must not have the same PCI

• It is desirable for neighbouring devices to have PCIs different
up to modulo 3

Problem:

• Cells are currently assigned a PCI using a distributed dynamic
heuristic

• It is not known how well this performs in practice

• We wish to assess performance via mathematical optimization

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Physical cell ID (PCI) assignment

• Each cell is assigned a Physical Cell ID (PCI) between 1 and
504

• Neighbouring cells must not have the same PCI

• It is desirable for neighbouring devices to have PCIs different
up to modulo 3

Problem:

• Cells are currently assigned a PCI using a distributed dynamic
heuristic

• It is not known how well this performs in practice

• We wish to assess performance via mathematical optimization

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Physical cell ID (PCI) assignment

• Each cell is assigned a Physical Cell ID (PCI) between 1 and
504

• Neighbouring cells must not have the same PCI

• It is desirable for neighbouring devices to have PCIs different
up to modulo 3

Problem:

• Cells are currently assigned a PCI using a distributed dynamic
heuristic

• It is not known how well this performs in practice

• We wish to assess performance via mathematical optimization

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Physical cell ID (PCI) assignment

• Each cell is assigned a Physical Cell ID (PCI) between 1 and
504

• Neighbouring cells must not have the same PCI

• It is desirable for neighbouring devices to have PCIs different
up to modulo 3

Problem:

• Cells are currently assigned a PCI using a distributed dynamic
heuristic

• It is not known how well this performs in practice

• We wish to assess performance via mathematical optimization

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Formulation

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Modelling the problem

• The system is modelled as a (possibly planar) sparse graph
G = (V ,E) where the nodes correspond to femtocells and an
edge is present between two nodes if they are neighbours

• PCI assignment can be
thought of as graph
colouring

• Each PCI (up to modulo 3)
represents a colour and one
must assign each node a
colour in such a way which
avoids neighbouring
femtocells using the same
colour

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Modelling the problem

• The system is modelled as a (possibly planar) sparse graph
G = (V ,E) where the nodes correspond to femtocells and an
edge is present between two nodes if they are neighbours

• PCI assignment can be
thought of as graph
colouring

• Each PCI (up to modulo 3)
represents a colour and one
must assign each node a
colour in such a way which
avoids neighbouring
femtocells using the same
colour

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Modelling the problem

• The system is modelled as a (possibly planar) sparse graph
G = (V ,E) where the nodes correspond to femtocells and an
edge is present between two nodes if they are neighbours

• PCI assignment can be
thought of as graph
colouring

• Each PCI (up to modulo 3)
represents a colour and one
must assign each node a
colour in such a way which
avoids neighbouring
femtocells using the same
colour

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Minimizing clashes

• We would like to find a 3-colouring which minimizes the edges
whose incident nodes use the same colour

• Can this be done by enumeration?

• No! There are 3|V | possible 3-colourings

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Integer programming formulation

min
∑

e∈E ye

s.t.
∑k

c=1 xvc = 1 (v ∈ V)

yuv ≥ xuc + xvc − 1 ({u, v} ∈ E , c = 1, . . . , k)

xvc ∈ {0, 1} (v ∈ V , c = 1, . . . , k)

yuv ∈ {0, 1} ({u, v} ∈ E).

where

xvc =

{
1 if node v uses colour c

0 otherwise

yuv =

{
1 if nodes u, v use the same colour

0 otherwise

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Complexity and solution

• The integer programming formulation given above is a special
case of the k-partition problem (k-PP)

• The k-PP is well known to be NP-hard in the strong sense

• We use the following approach:

1. Preprocessing (reducing and decomposing graph)
2. Cutting-plane and branch-and-bound

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Neighbourhood graph

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Random disk graph
• Two radio devices can hear each other if they are within a

given radius
• We construct random graphs by sampling points on unit

square/torus and linking points within a given radius
• The larger the radius the more dense the graph

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Neighbours of neigbour graph

• Conflict also occurs if two femtocells with a common
neighbour use the same PCI modulo 3

• Edge set augmented by edges between nodes which have a
neighbour in common

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Preprocessing

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Preprocessing

• Given the difficulty of problem it is essential the graph is small
as possible

• The neighbourhood graph can be reduced by two operations:
k-core reduction and biconnected component decomposition

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

k-core reduction

• The k-core of a graph is the largest induced subgraph where
all vertices have at least k neighbours:

Figure : Full graph

• The k-core yields the same optimal solution value to the k-PP
as the original graph

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

k-core reduction

• The k-core of a graph is the largest induced subgraph where
all vertices have at least k neighbours:

Figure : 2-core reduction

• The k-core yields the same optimal solution value to the k-PP
as the original graph

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

k-core reduction

• The k-core of a graph is the largest induced subgraph where
all vertices have at least k neighbours:

Figure : 3-core reduction

• The k-core yields the same optimal solution value to the k-PP
as the original graph

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Biconnected components

• A biconnected component is a maximal subgraph which
cannot be disconnected by the removal of a single node

Figure : Full graph

• The optimal solution value to the k-PP is the sum of those
for all the biconnected components

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Biconnected components

• A biconnected component is a maximal subgraph which
cannot be disconnected by the removal of a single node

Figure : Biconnected components

• The optimal solution value to the k-PP is the sum of those
for all the biconnected components

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Graph decomposition for PCI assignment

• k-core reduction can result in graph which is not connected or
biconnected, and biconnected components may not be
reducible

• 3-core reductions and biconnected components
decompositions can be applied iteratively

• The optimal solution value for k-PP is the sum of that for all
components

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Power of decomposition

• The reduction achieved depends the sparsity of the graph

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Disk Radius

0.0

0.2

0.4

0.6

0.8

1.0

E
d
g
e
 R

e
d
u
ct

io
n

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Disk Radius

0

20

40

60

80

100

M
a
x
im

u
m

 V
e
rt

ic
e
s

Graph Decomposition, Original Graph: 200 vertices

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Cutting-Plane Algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Integer programs and linear relaxations

minimize
x

cT x

s.t. Ax ≥ b

x ∈ Zn

• The linear relaxation of an integer program is the problem
without integer constraints

• A cutting-plane is an inequality which is satisfied by all
feasible integer solutions but violated by at least one solution
of the linear relaxation

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Integer programs and linear relaxations

minimize
x

cT x

s.t. Ax ≥ b

x ∈ Rn

• The linear relaxation of an integer program is the problem
without integer constraints

• A cutting-plane is an inequality which is satisfied by all
feasible integer solutions but violated by at least one solution
of the linear relaxation

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Clique inequalities

Theorem ([Chopra and Rao, 1993])

For a clique C ⊂ V , the following inequality is valid:∑
u,v∈C

yuv ≥
(

t + 1

2

)
r +

(
t

2

)
(k − r)

where t = b |C |
k c and r mod k. Moreover, it is facet-defining if

r 6= 0.

Figure : A clique of size 5

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Solution Algorithm

1. Run an LP-based cutting-plane algorithm in y -space with
clique inequalities

2. Delete non-binding cuts

3. Add the x variables and associated constraints

4. Run branch-and-bound on the strengthened (x , y) formulation

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Modulo-6 Extension

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Modulo-6 Interference

• Adjacent devices which both use the same PCI modulo 6 can
cause additional interference

• Taking this into account our problem becomes a 6-colouring

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Problem reformulation

min w
∑

{u,v}∈E yuv +
∑

{u,v}∈E zuv

s.t.
∑6

c=1 xvc = 1 (v ∈ V)

yuv ≥ xuc + xu,c+3 + xvc + xv ,c+3 − 1 ({u, v} ∈ E , c = 1, 2, 3)

zuv ≥ xuc + xvc − 1 ({u, v} ∈ E , c = 1, . . . , 6)

xvc ∈ {0, 1} (v ∈ V , c = 1, . . . , 6)

yuv ∈ {0, 1} ({u, v} ∈ E)

zuv ∈ {0, 1} ({u, v} ∈ E).

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

A valid inequality

Theorem ([Fairbrother and Letchford, 2016])

For all C ⊆ V inducing a clique in G , with |C | ≥ 3, the following
“(y , z)-clique” inequalities are valid:

2
∑

u,v∈C
zuv ≥

∑
u,v∈C

yuv −
⌊
|C |
2

⌋
.

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

A new cutting-plane algorithm

1. Run an LP-based cutting-plane algorithm in y -space.

2. Delete non-binding cuts.

3. Add the z variables and associated constraints.

4. Run an LP-based cutting-plane algorithm in (y , z)-space.

5. Delete non-binding cuts.

6. Add the x variables and associated constraints.

7. Run branch-and-bound on the strengthened (x , y , z)
formulation.

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Numerical results: Optimality Gaps

• Lower bounds calculated after each cutting-plane phase for
random neighbourhood graphs

max. clique size y-cut opt. val. yz-cut opt. val. optimum value

6 17.250000 17.250000 18.0
8 27.000000 30.500000 32.0
7 24.500000 25.500000 26.0
8 33.831933 39.019776 41.0
8 31.767464 35.262257 37.0

Table : Optimality gaps for random disk graphs with 50 points and radius
0.15

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Numerical results: Solution time

• Time to solve problem with and without preprocessing and
cutting plane are recorded

BB CP+BB PP+BB PP+CP+BB

1.306422 0.341890 2.664614 0.277587
33.182424 2.140248 11.791344 0.713823

166.210727 6.849852 49.542621 9.210316
34.594568 0.985396 22.054915 0.621656

1.455401 0.410856 2.033473 0.388565

Table : Solution times for random disk graphs with 50 points and radius
0.15
(BB=Branch-and-bound, CP=Cutting Plane, PP=Preprocessing)

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Conclusions

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Conclusions

• The problem of assigning PCI to femtocell devices can be
formulated as an integer program

• This problem is defined over an appropriately defined network

• Problem is difficult especially when one takes into account
modulo 6 clashes

• Preprocessing is particularly effective at reducing problem for
more sparse graphs

• Cutting-plane algorithms based on clique inequalities yield
good lower bounds and drastically reduce solution time

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Future work

• Test performance of distributed heuristic with respect to
optimal solution value

• Use more realistic point processes, or even real data for
construction of neighbourhood graph

• Consider other possible extensions, such as power
configuration

Introduction Formulation Neighbourhood graph Preprocessing Cutting-Plane Algorithm Modulo-6 Extension Conclusions

Chopra, S. and Rao, M. (1993).
The partition problem.
Mathematical Programming, 59(1-3):87–115.

Fairbrother, J. and Letchford, A. (2016).
Some variants of the k-partition problem arising in mobile
wireless communications.
Working paper.

	Introduction
	Formulation
	Neighbourhood graph
	Preprocessing
	Cutting-Plane Algorithm
	Modulo-6 Extension
	Conclusions

