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Femtocells

Femtocells:

• Femtocells are small home radio devices
which use the LTE (4G) network

• Supplement for home WiFi networks

• Serve BT roaming users to provide faster
and more reliable wireless coverage
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Physical cell ID (PCI) assignment

• Each cell is assigned a Physical Cell ID (PCI) between 1 and
504

• Neighbouring cells must not have the same PCI

• It is desirable for neighbouring devices to have PCIs different
up to modulo 3

Problem:

• Cells are currently assigned a PCI using a distributed dynamic
heuristic

• It is not known how well this performs in practice

• We wish to assess performance via mathematical optimization
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Formulation
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Modelling the problem

• The system is modelled as a (possibly planar) sparse graph
G = (V ,E ) where the nodes correspond to femtocells and an
edge is present between two nodes if they are neighbours

• PCI assignment can be
thought of as graph
colouring

• Each PCI (up to modulo 3)
represents a colour and one
must assign each node a
colour in such a way which
avoids neighbouring
femtocells using the same
colour
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Minimizing clashes

• We would like to find a 3-colouring which minimizes the edges
whose incident nodes use the same colour

• Can this be done by enumeration?

• No! There are 3|V | possible 3-colourings
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Integer programming formulation

min
∑

e∈E ye

s.t.
∑k

c=1 xvc = 1 (v ∈ V )

yuv ≥ xuc + xvc − 1 ({u, v} ∈ E , c = 1, . . . , k)

xvc ∈ {0, 1} (v ∈ V , c = 1, . . . , k)

yuv ∈ {0, 1} ({u, v} ∈ E ).

where

xvc =

{
1 if node v uses colour c

0 otherwise

yuv =

{
1 if nodes u, v use the same colour

0 otherwise
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Complexity and solution

• The integer programming formulation given above is a special
case of the k-partition problem (k-PP)

• The k-PP is well known to be NP-hard in the strong sense

• We use the following approach:

1. Preprocessing (reducing and decomposing graph)
2. Cutting-plane and branch-and-bound
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Neighbourhood graph
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Random disk graph
• Two radio devices can hear each other if they are within a

given radius
• We construct random graphs by sampling points on unit

square/torus and linking points within a given radius
• The larger the radius the more dense the graph
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Neighbours of neigbour graph

• Conflict also occurs if two femtocells with a common
neighbour use the same PCI modulo 3

• Edge set augmented by edges between nodes which have a
neighbour in common
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Preprocessing
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Preprocessing

• Given the difficulty of problem it is essential the graph is small
as possible

• The neighbourhood graph can be reduced by two operations:
k-core reduction and biconnected component decomposition
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k-core reduction

• The k-core of a graph is the largest induced subgraph where
all vertices have at least k neighbours:

Figure : Full graph

• The k-core yields the same optimal solution value to the k-PP
as the original graph
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k-core reduction

• The k-core of a graph is the largest induced subgraph where
all vertices have at least k neighbours:

Figure : 2-core reduction

• The k-core yields the same optimal solution value to the k-PP
as the original graph
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k-core reduction

• The k-core of a graph is the largest induced subgraph where
all vertices have at least k neighbours:

Figure : 3-core reduction

• The k-core yields the same optimal solution value to the k-PP
as the original graph
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Biconnected components

• A biconnected component is a maximal subgraph which
cannot be disconnected by the removal of a single node

Figure : Full graph

• The optimal solution value to the k-PP is the sum of those
for all the biconnected components
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Graph decomposition for PCI assignment

• k-core reduction can result in graph which is not connected or
biconnected, and biconnected components may not be
reducible

• 3-core reductions and biconnected components
decompositions can be applied iteratively

• The optimal solution value for k-PP is the sum of that for all
components
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Power of decomposition

• The reduction achieved depends the sparsity of the graph
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Cutting-Plane Algorithm
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Recap: Integer programs and linear relaxations

minimize
x

cT x

s.t. Ax ≥ b

x ∈ Zn

• The linear relaxation of an integer program is the problem
without integer constraints

• A cutting-plane is an inequality which is satisfied by all
feasible integer solutions but violated by at least one solution
of the linear relaxation
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x

cT x

s.t. Ax ≥ b

x ∈ Rn
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Recap: Cutting-planes algorithm

Figure : Cutting-plane algorithm
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Clique inequalities

Theorem ([Chopra and Rao, 1993])

For a clique C ⊂ V , the following inequality is valid:∑
u,v∈C

yuv ≥
(

t + 1

2

)
r +

(
t

2

)
(k − r)

where t = b |C |
k c and r mod k. Moreover, it is facet-defining if

r 6= 0.

Figure : A clique of size 5
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Solution Algorithm

1. Run an LP-based cutting-plane algorithm in y -space with
clique inequalities

2. Delete non-binding cuts

3. Add the x variables and associated constraints

4. Run branch-and-bound on the strengthened (x , y) formulation
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Modulo-6 Extension
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Modulo-6 Interference

• Adjacent devices which both use the same PCI modulo 6 can
cause additional interference

• Taking this into account our problem becomes a 6-colouring
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Problem reformulation

min w
∑

{u,v}∈E yuv +
∑

{u,v}∈E zuv

s.t.
∑6

c=1 xvc = 1 (v ∈ V )

yuv ≥ xuc + xu,c+3 + xvc + xv ,c+3 − 1 ({u, v} ∈ E , c = 1, 2, 3)

zuv ≥ xuc + xvc − 1 ({u, v} ∈ E , c = 1, . . . , 6)

xvc ∈ {0, 1} (v ∈ V , c = 1, . . . , 6)

yuv ∈ {0, 1} ({u, v} ∈ E )

zuv ∈ {0, 1} ({u, v} ∈ E ).
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A valid inequality

Theorem ([Fairbrother and Letchford, 2016])

For all C ⊆ V inducing a clique in G , with |C | ≥ 3, the following
“(y , z)-clique” inequalities are valid:

2
∑

u,v∈C
zuv ≥

∑
u,v∈C

yuv −
⌊
|C |
2

⌋
.
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A new cutting-plane algorithm

1. Run an LP-based cutting-plane algorithm in y -space.

2. Delete non-binding cuts.

3. Add the z variables and associated constraints.

4. Run an LP-based cutting-plane algorithm in (y , z)-space.

5. Delete non-binding cuts.

6. Add the x variables and associated constraints.

7. Run branch-and-bound on the strengthened (x , y , z)
formulation.
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Numerical results: Optimality Gaps

• Lower bounds calculated after each cutting-plane phase for
random neighbourhood graphs

max. clique size y-cut opt. val. yz-cut opt. val. optimum value

6 17.250000 17.250000 18.0
8 27.000000 30.500000 32.0
7 24.500000 25.500000 26.0
8 33.831933 39.019776 41.0
8 31.767464 35.262257 37.0

Table : Optimality gaps for random disk graphs with 50 points and radius
0.15
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Numerical results: Solution time

• Time to solve problem with and without preprocessing and
cutting plane are recorded

BB CP+BB PP+BB PP+CP+BB

1.306422 0.341890 2.664614 0.277587
33.182424 2.140248 11.791344 0.713823

166.210727 6.849852 49.542621 9.210316
34.594568 0.985396 22.054915 0.621656

1.455401 0.410856 2.033473 0.388565

Table : Solution times for random disk graphs with 50 points and radius
0.15
(BB=Branch-and-bound, CP=Cutting Plane, PP=Preprocessing)
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Conclusions

• The problem of assigning PCI to femtocell devices can be
formulated as an integer program

• This problem is defined over an appropriately defined network

• Problem is difficult especially when one takes into account
modulo 6 clashes

• Preprocessing is particularly effective at reducing problem for
more sparse graphs

• Cutting-plane algorithms based on clique inequalities yield
good lower bounds and drastically reduce solution time
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Future work

• Test performance of distributed heuristic with respect to
optimal solution value

• Use more realistic point processes, or even real data for
construction of neighbourhood graph

• Consider other possible extensions, such as power
configuration
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