The Role of Graph Entropy and Constraints on Fault Localization and Structure Evolution in Data Networks

Mathematics of Networks 15, University of Bath

Phil Tee email: phil@moogsoft.com September 23, 2016

University of Sussex and Moogsoft Inc

University of Sussex

The Journey From Fault Localization to Graph Evolution

- Fault localization challenge = too many noisy events
- Graph entropy could eliminate noise, but is global
- Introduce local vertex entropy following Dehmer [2].
- Measures applied to real datasets
- Problems with power law node degree fits with these networks
- Introduce a new constraint model to explain deviations
- New vertex entropy, network growth model possible?

Problem Statement

The Problem of Event Overload in Event Management

Spotting Events that Threaten Availability

- Fault Localization Algorithms most common solution
- They struggle to scale to 10,000's events per second, mostly noise
- Common Approaches to Mitigate
 - Manual blacklisting
 - Restriction of monitoring to core devices
 - Deploy headcount
- Can we use topology and graph theory here? ¹

"74% Application Incidents reported by End Users"

FORRESTER

¹We use standard Graph Theory notation throughout, see any standard text such as [3]. We denote a graph by G(V, E) a double set of vertices V and their edges E

Theoretical Background

Graph Structure and Node Importance

How important is a Node in a Graph

- Network Science demonstrates some nodes are more critical (Barabási-Albert [4], [5])
- High degree nodes destroy graph connectivity quicker than low degree
- Conclusion: High Degree Nodes are more "Important"
- Many other measures exist, we focus on entropy

What is Graph Entropy H[G(V, E)]

- Measures structural *information* in a graph. The more meshed a graph, the lower the entropy
- Chromatic Entropy
 - Defined using Chromatic number of the graph. Acts like "negentropy"
- Körner or Structural Entropy²
 - Closely related, uses non adjacent sets of vertices
- Von Neumann Entropy
 - Defined by the eigenvalues of the *Laplacian* matrix of a graph. Measures the connectivity of a graph

 $^{^2\}mbox{We}$ assume in our treatment that vertex emission probabilities are all uniform

Graph Entropy a Measure of Redundancy

Graph Types that Maximise and Minimize Entropy³

	Chromatic	Structural	Von Neumann
Maximum	K _n	Sn	K _n
Minimum	S _n	K _n	P _n

³In all of our work we only consider connected, simple graphs

- It is only valid globally, no value for an individual node
- All are expensive to compute, and contain NP complete problems

We need a vertex value such that $H[G(V, E)] \sim \sum_{v \in G} H(v)$

- Dehmer ([2]) creates a framework for calculating graph entropy in terms of vertices
- Introduces vertex information functional f_i(v) of a node v, with vertex probability defined as

$$p_i(v) = \frac{f_i(v)}{\sum_{v \in G} f_i(v)}$$

• Node entropy $H(v) = -p_i \log p_i$, and total graph entropy $H(G) = \sum_{v \in G} H(v)$

• We define an inverse degree entropy for a node VE(v) as:

$$p_i(v_i) = rac{1}{k_i}$$
 where k_i is the degree of v_i , $VE(v_i) = rac{1}{k_i}\log_2(k_i)$

• And fractional degree entropy of a node VE'(v) as:

$$p_i(v_i) = rac{k_i}{2|E|}, \ VE'(v_i) = rac{k_i}{2|E|}\log_2\left(rac{2|E|}{k_i}
ight)$$

• These two measures do not take into account high degree nodes which are redundantly connected into the graph

Not all High Degree Nodes are Equal!

- To capture importance more accurately we suppress entropy for highly meshed nodes
- A highly meshed network has local similarity to the perfect graph K_n. The modified ⁴ clustering coefficient C_i of the neighborhood of a vertex *i* scales our metrics as:

$$C_i = \frac{2|E_1(v_i)|}{k_i(k_i+1)}, \ NVE(v) = \frac{1}{C_i}VE(v) \ \text{and} \ NVE'(v) = \frac{1}{C_i}VE'(v)$$

And for the whole graphs:

$$NVE(G) = \sum_{i=0}^{i < n} \frac{(k_i + 1)}{2|E_i|} \log_2(k_i)]$$

$$NVE'(G) = \sum_{i=0}^{i < n} \frac{k_i^2(k_i + 1)}{4|E||E_i|} \log_2\left(\frac{2|E|}{k_i}\right)$$

⁴we include the central vertex in our version to avoid problematic zeros

Comparing NVE and NVE' to Global Entropy Measures

Values of Normalize	d Entropy for	Special	Graphs
---------------------	---------------	---------	--------

	NVE	NVE'
Sn	$\frac{n}{2(n-1)}\log_2(n-1)$	$\frac{1}{2}\log_2\{2(n-1)\}+\frac{n}{4}$
Kn	$\frac{n}{n-1}\log_2(n-1)$	$\log_2(n)$
Pn	$\frac{3}{4}(n-2)$	$\frac{1}{n-1} + \frac{3n-4}{2(n-1)}\log_2(n-1)$
Cn	$\frac{3}{4}n$	$\frac{3}{2} \log_2(n)$

Maximal and Minimal Total Vertex Entropy Graph Types

	NVE	NVE'	
Maximum	$C_n \sim P_n$	Sn	
Minimum	Sn	Kn	

Close inspection of the minima and maxima indicate that *NVE'* has similar limit behavior to Structural entropy, and *NVE* to Chromatic entropy

Our Experimental Data Sets

- **Commercial:** Moogsoft routinely collects the following from our customers
 - **Topology:** Manually curated and automatically discovered lists of node to node connections
 - Network Events: From their (Moogsoft Supplied) management systems collections of monitored network events
 - Incidents: From their help-desk and escalation systems collections of escalated events.
- Our principal dataset covers 225,239 nodes, 96,325,275 events and 37,099 incidents
- Academic: "The Internet Topology Zoo" by S.Knight *et al* [6] curates **15,523** network nodes across a number of real world telecoms networks.

What Would and Ideal Distribution Look Like?

Ideal Distribution of Incidents and Events

Distributions of *NVE*

Distribution of Incidents and Events by NVE

Analysis

Noticeable separation of distribution to favor high NVE for Incidents

Distribution of Incidents and Events by NVE'

Analysis

Separation of distribution of Incidents and Events by NVE^\prime statistically significant

Comparing *NVE'* to Degree Importance

• Taking the same dataset and comparing distributions it is evident *NVE'* is more predictive than node degree

Distribution of Incidents by NVE'(v) and Node Degree

Distribution of Events by NVE'(v) and Node Degree

A Constraint Based model of Network Growth

- Deduces a degree distribution power law from the principles of
 - Growth: Starting at time t_i a single new node is added at each time interval t to a network of m₀ nodes. When the node is added to the network it attaches to m other nodes. This process continues indefinitely
 - Preferential Attachment: The node attaches to other nodes with a probability determined by the degree of the target node, such that more highly connected nodes are preferred over lower degree nodes
- Central prediction is power law degree distributions:

$$P(k)=rac{2m^2t}{m_0+t}rac{1}{k^\gamma},$$
 with $\gamma=3$

Analysis of Networks Demonstrates Deviations at High k

• Considerable deviations from Power Law distribution at high degree in Analyzed Networks [7], [6]

IT Zoo Networks

Facebook Friendship Graph

Not Confined to any Particular Type of Graph...

• Seen again in citation networks, and across all 20 datasets analyzed.

1×10⁴

 Arxiv HepTh (Cit) P(k) c=2468 1x10³ (¥) ^{1×10²} Bol ^{1×10¹} : 2.709-2.142 <v>: 2.220 1×10⁻¹ 1x10¹ 1x10² 1×10³ loa(k)

Patent Citations

ArXiv HepTh Citation Graph

Our Proposed Model

- We propose a simple average constraint on the maximum degree of a node 'c'
- We scale the probability of attachment by the capacity of the node relative to average capacity

$$\Pi_i = \zeta_i \times P(attachment)$$
, where $\zeta_i = \frac{(c - k_i)}{\langle c_i(t) \rangle}$

• This can be solved using the continuum approach for P(k)

$$P(k) = \frac{2c\rho^{2/\alpha}t}{\alpha(t+m_0)} \left(\frac{(c-k)^{\frac{2}{\alpha}-1}}{k^{\frac{2}{\alpha}+1}}\right) \sim \frac{1}{k^{\gamma}}$$

where
$$\alpha = \frac{c}{c-2m}$$
 and $\rho = \frac{m}{c-m}$ and $\gamma = \frac{2}{\alpha} + 1$

Analysis of Datasets Confirms an Improved Prediction for γ

• 9 of 20 datasets analyzed show an agreement with calculated γ of <10% (shown in bold below)

Comparison of γ Predictions Between Preferential Attachment and Constraints Model

Source	γ Calculated	γ Measured	△ Constraints	Δ Preferential
Arxiv - HepTh (Cit)	2.71	2.71	0.05%	11.00%
Berkley Stanford Web	2.89	2.85	1.44%	5.00%
IT Zoo	2.50	2.54	1.62%	18.00%
Pokec	2.70	2.65	1.68%	13.00%
Web Provider	2.78	2.68	3.54%	12.00%
IMDB Movie Actors	2.43	2.30	5.83%	30.43%
Arxiv - HepTh (Collab)	2.81	2.64	6.42%	13.00%
Internet Router	2.66	2.48	7.15%	20.97%
Arxiv - Astro Phys	2.54	2.77	8.31%	8.00%
Twitter (Follower)	2.96	2.65	11.54%	13.00%
Patent Citation	2.59	2.28	13.9%	32.00%
Co-authors, math	2.87	2.5	14.80%	20.00%
Enron Email	2.96	2.57	15.05%	17.00%
AS Skitter	2.92	2.47	18.19%	21.00%
Arxiv - Cond Matt	2.69	2.24	20.37%	34.00%
Metabolic, E. coli	2.73	2.20	24.13%	36.36%
Twitter (Circles)	2.72	2.01	35.44%	49.00%
Co-authors, neuro	2.88	2.1	37.36%	42.86%
Facebook	2.25	1.39	62.08%	116.00%
Co-authors, SPIRES	2.37	1.2	97.58%	150.00%

Could Graph Entropy Explain Both Growth Models?

Basis of Model

- The 2nd law of thermodynamics states that total entropy must tend to a maximum in any closed system.
- One consequence is the concept of entropic force, which explains natural processes such as osmosis.

$$F = \mathbf{T} \Delta \mathbf{S}$$

 ${\bf T}$ is thermodynamic 'temperature' and ${\bf S}$ is the entropy of the system.

- Entropy of the whole graph has been considered before ([8]). We imagine a vertex level dynamic process.
- Propose probability of attachment to a given node is proportional to the relative 'attraction' of 'force' exerted by a particular node:

$$\Pi_i = \frac{F_i(v_i)}{\sum_{j \neq i} F_j(v_j)}$$

we can then follow continuum analysis.

Overview of Analysis

 We factor out the temperature dependence, and by approximating the denominator using an expectation value of the change in entropy, we arrive at

$$\Pi_i = \epsilon \Delta \mathbf{S}_i$$
, where $\epsilon = \frac{1}{|V| \times \mathbb{E}(\Delta \mathbf{S})}$

• To calculate ΔS_i we note $\Delta S_i = \frac{\partial S_i}{\partial k} \times \delta k$, with, for a single time step, $\delta k = 2m$. This gives as an attachment probability

$$\Pi_i = \epsilon 2m \frac{\partial \mathbf{S}_i}{\partial k}$$

• For **S**_i we can insert our previous definition of *NVE*', approximating the clustering coefficient to yield

$$S_k = \frac{k^2}{4m^2t^2}\log\left(\frac{2mt}{k}\right)$$

• We derive the final form of the degree evolution partial differential equation to be

$$\frac{\partial k}{\partial t} = 2m\Pi_i = -\epsilon \frac{k}{t} \left\{ \frac{1}{2} + \log\left(\frac{k}{2mt}\right) \right\}$$

• Which as $k \ll 2mt$ we can expand the logarithm to obtain

$$\frac{\partial k}{\partial t} \approx \frac{\epsilon k}{2t} - \frac{\epsilon k^2}{2mt} + \epsilon O\left(\frac{k}{2mt}\right)^2$$

- Taylor series expansion has preferential attachment and constraints as the first two terms!
- Higher terms may reveal even more complex corrections to scale freedom
- The constant ϵ explains why γ is never exactly 3 even at low k
- The model has been arrived at from fundamental principles and could explain **why** nodes preferentially attach

Conclusions

- Vertex entropy, NVE' is useful at eliminating noisy events
- The constraints model more accurately matches real network metrics
- Vertex entropy can be used to build an entropic model of network growth.
- This model has constraints emerging naturally and explains why γ is never exactly 3

I would like to thank my colleagues at Moogsoft and our customers who gave us their time and data I would also like to thank Ian and George for the continual help, suggestions, and support in developing these ideas Finally, I would like to thank Christine for her debate, encouragement, and editorial services given freely!

Summary References

References I

- P. Tee, G. Parisis, and I. Wakeman, "Towards an Approximate Graph Entropy Measure for Identifying Incidents in Network Event Data," no. AnNet, pp. 1049–1054, 2016.
- [2] M. Dehmer, "Information processing in complex networks: Graph entropy and information functionals," *Applied Mathematics and Computation*, vol. 201, no. 1-2, pp. 82–94, 2008.
- [3] B. Bollobàs, *Modern Graph Theory*. Springer-Verlag New York, 1998.
- [4] R. Albert and A.-L. Barabási, "Statistical mechanics of complex networks," *Review of Modern Physics*, vol. 74, no. January, 2002.
- [5] R. Albert, H. Jeong, and A. Barabasi, "Error and attack tolerance of complex networks," *Nature*, vol. 406, no. 6794, pp. 378–82, 2000.

- S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, "The internet topology zoo," *IEEE Journal on Selected Areas in Communications*, vol. 29, no. 9, pp. 1765–1775, 2011.
- [7] J. Leskovec and A. Krevl, "SNAP Datasets: Stanford Large Network Dataset Collection," url{http://snap.stanford.edu/data}, jun 2014.
- [8] J. Park and M. E. J. Newman, "Statistical mechanics of networks," *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*, vol. 70, no. 6 2, pp. 1–13, 2004.