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Overview of our Research

The Journey From Fault Localization to Graph Evolution

Graph Entropy and Fault Localization

Vertex Entropy and Significant Events [1]

Entropic Model of Graph Evolution

Deviation of Degree Distributions from Power Laws

Constraint Models of Graph Evolution

2



Summary

• Fault localization challenge = too many noisy events

• Graph entropy could eliminate noise, but is global

• Introduce local vertex entropy following Dehmer [2].

• Measures applied to real datasets

• Problems with power law node degree fits with these networks

• Introduce a new constraint model to explain deviations

• New vertex entropy, network growth model possible?

3



Problem Statement



The Problem of Event Overload in Event Management

Spotting Events that Threaten Availability

• Fault Localization Algorithms most common solution

• They struggle to scale to 10,000’s events per second, mostly noise

• Common Approaches to Mitigate

• Manual blacklisting

• Restriction of monitoring to core devices

• Deploy headcount

• Can we use topology and graph theory here? 1

“74% 
Application 
Incidents 

reported by 
End Users”

1We use standard Graph Theory notation throughout, see any standard text such as

[3]. We denote a graph by G(V ,E) a double set of vertices V and their edges E 5



Theoretical Background



Graph Structure and Node Importance

How important is a Node in a Graph

• Network Science demonstrates some nodes are more critical (Barabási-Albert

[4], [5])

• High degree nodes destroy graph connectivity quicker than low degree

• Conclusion: High Degree Nodes are more ”Important”

• Many other measures exist, we focus on entropy
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Graph Entropy and Network Resilience

What is Graph Entropy H[G (V ,E )]

• Measures structural information in a graph. The more meshed a

graph, the lower the entropy

• Chromatic Entropy

• Defined using Chromatic number of the graph. Acts like

”negentropy”

• Körner or Structural Entropy2

• Closely related, uses non adjacent sets of vertices

• Von Neumann Entropy

• Defined by the eigenvalues of the Laplacian matrix of a graph.

Measures the connectivity of a graph

2We assume in our treatment that vertex emission probabilities are all uniform
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Graph Entropy a Measure of Redundancy

A D

B C

S4

A D

B C

K4

A D

B C

C4

A D

B C

P4

Graph Types that Maximise and Minimize Entropy3

Chromatic Structural Von Neumann

Maximum Kn Sn Kn

Minimum Sn Kn Pn

3In all of our work we only consider connected, simple graphs
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Global Measures Computationally too Complex

• It is only valid globally, no value for an individual node

• All are expensive to compute, and contain NP complete problems

We need a vertex value such that H[G (V ,E )] ∼
∑

v∈G H(v)
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The Dehmer Vertex Informational Functional

• Dehmer ([2]) creates a framework for calculating graph entropy in

terms of vertices

• Introduces vertex information functional fi (v) of a node v , with

vertex probability defined as

pi (v) =
fi (v)∑
v∈G fi (v)

• Node entropy H(v) = −pi log pi , and total graph entropy

H(G ) =
∑

v∈G H(v)
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Introducing the Local Vertex Entropy VE and VE ′

• We define an inverse degree entropy for a node VE (v) as:

pi (vi ) =
1

ki
where ki is the degree of vi , VE (vi ) =

1

ki
log2(ki )

• And fractional degree entropy of a node VE ′(v) as:

pi (vi ) =
ki

2|E |
, VE ′(vi ) =

ki
2|E |

log2

(2|E |
ki

)
• These two measures do not take into account high degree nodes

which are redundantly connected into the graph
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Not all High Degree Nodes are Equal!

• To capture importance more accurately we suppress entropy for highly meshed

nodes

• A highly meshed network has local similarity to the perfect graph Kn. The

modified 4 clustering coefficient Ci of the neighborhood of a vertex i scales our

metrics as:

Ci =
2|E1(vi )|
ki (ki + 1)

, NVE (v) =
1

Ci
VE (v) and NVE ′(v) =

1

Ci
VE ′(v)

• And for the whole graphs:

NVE (G ) =
i<n∑
i=0

(ki + 1)

2|Ei |
log2(ki )]

NVE ′(G ) =
i<n∑
i=0

k2
i (ki + 1)

4|E ||Ei |
log2

(2|E |
ki

)

4we include the central vertex in our version to avoid problematic zeros
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Comparing NVE and NVE ′ to Global Entropy Measures

Values of Normalized Entropy for Special Graphs

NVE NVE’

Sn
n

2(n−1) log2(n − 1) 1
2 log2{2(n − 1)}+ n

4

Kn
n

n−1 log2(n − 1) log 2(n)

Pn
3
4 (n − 2) 1

n−1 + 3n−4
2(n−1) log2(n − 1)

Cn
3
4n

3
2 log 2(n)

Maximal and Minimal Total Vertex Entropy Graph Types

NVE NVE’

Maximum Cn ∼ Pn Sn

Minimum Sn Kn

Close inspection of the minima and maxima indicate that NVE ′ has

similar limit behavior to Structural entropy, and NVE to Chromatic entropy
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Our Experimental Data Sets

• Commercial: Moogsoft routinely collects the following from our

customers

• Topology: Manually curated and automatically discovered lists of

node to node connections

• Network Events: From their (Moogsoft Supplied) management

systems collections of monitored network events

• Incidents: From their help-desk and escalation systems collections of

escalated events.

• Our principal dataset covers 225,239 nodes, 96,325,275 events and

37,099 incidents

• Academic: ”The Internet Topology Zoo” by S.Knight et al [6]

curates 15,523 network nodes across a number of real world

telecoms networks.
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What Would and Ideal Distribution Look Like?
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Distributions of NVE
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Distributions of NVE ′
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Separation of distribution of Incidents and Events by NVE ′ statistically

significant
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Comparing NVE ′ to Degree Importance

• Taking the same dataset and comparing distributions it is evident NVE ′ is

more predictive than node degree
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A Constraint Based model of

Network Growth



The Barabási-Albert Model Recap

• Deduces a degree distribution power law from the principles of

• Growth: Starting at time ti a single new node is added at each time

interval t to a network of m0 nodes. When the node is added to the

network it attaches to m other nodes. This process continues

indefinitely

• Preferential Attachment: The node attaches to other nodes with a

probability determined by the degree of the target node, such that

more highly connected nodes are preferred over lower degree nodes

• Central prediction is power law degree distributions:

P(k) =
2m2t

m0 + t

1

kγ
, with γ = 3
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Analysis of Networks Demonstrates Deviations at High k

• Considerable deviations from Power Law distribution at

high degree in Analyzed Networks [7], [6]
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Not Confined to any Particular Type of Graph...

• Seen again in citation networks, and across all 20

datasets analyzed.
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Our Proposed Model

• We propose a simple average constraint on the maximum degree of

a node ‘c ’

• We scale the probability of attachment by the capacity of the node

relative to average capacity

Πi = ζi × P(attachment), where ζi =
(c − ki )

〈ci (t)〉

• This can be solved using the continuum approach for P(k)

P(k) =
2cρ2/αt

α(t + m0)

(
(c − k)

2
α−1

k
2
α+1

)
∼ 1

kγ

where α =
c

c − 2m
and ρ =

m

c −m
and γ =

2

α
+ 1
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Analysis of Datasets Confirms an Improved Prediction for γ

• 9 of 20 datasets analyzed show an agreement with calculated γ of

< 10% (shown in bold below)

Comparison of γ Predictions Between Preferential Attachment and Constraints Model

Source γ Calculated γ Measured ∆ Constraints ∆ Preferential

Arxiv - HepTh (Cit) 2.71 2.71 0.05% 11.00%

Berkley Stanford Web 2.89 2.85 1.44% 5.00%

IT Zoo 2.50 2.54 1.62% 18.00%

Pokec 2.70 2.65 1.68% 13.00%

Web Provider 2.78 2.68 3.54% 12.00%

IMDB Movie Actors 2.43 2.30 5.83% 30.43%

Arxiv - HepTh (Collab) 2.81 2.64 6.42% 13.00%

Internet Router 2.66 2.48 7.15% 20.97%

Arxiv - Astro Phys 2.54 2.77 8.31% 8.00%

Twitter (Follower) 2.96 2.65 11.54% 13.00%

Patent Citation 2.59 2.28 13.9% 32.00%

Co-authors, math 2.87 2.5 14.80% 20.00%

Enron Email 2.96 2.57 15.05% 17.00%

AS Skitter 2.92 2.47 18.19% 21.00%

Arxiv - Cond Matt 2.69 2.24 20.37% 34.00%

Metabolic, E. coli 2.73 2.20 24.13% 36.36%

Twitter (Circles) 2.72 2.01 35.44% 49.00%

Co-authors, neuro 2.88 2.1 37.36% 42.86%

Facebook 2.25 1.39 62.08% 116.00%

Co-authors, SPIRES 2.37 1.2 97.58% 150.00%
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Could Graph Entropy Explain

Both Growth Models?



Basis of Model

• The 2nd law of thermodynamics states that total entropy must tend to a

maximum in any closed system.

• One consequence is the concept of entropic force, which explains natural

processes such as osmosis.

F = T∆S

T is thermodynamic ‘temperature’ and S is the entropy of the system.

• Entropy of the whole graph has been considered before ([8]). We

imagine a vertex level dynamic process.

• Propose probability of attachment to a given node is proportional to the

relative ‘attraction‘ of ‘force’ exerted by a particular node:

Πi =
Fi (vi )∑
j 6=i Fj(vj)

we can then follow continuum analysis.
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Overview of Analysis

• We factor out the temperature dependence, and by approximating the

denominator using an expectation value of the change in entropy, we arrive at

Πi = ε∆Si , where ε =
1

|V | × E(∆S)

• To calculate ∆Si we note ∆Si = ∂Si

∂k × δk , with, for a single time step,

δk = 2m. This gives as an attachment probability

Πi = ε2m
∂Si

∂k

• For Si we can insert our previous definition of NVE ′, approximating the

clustering coefficient to yield

Sk =
k2

4m2t2
log

(
2mt

k

)
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Approximating Si and Final Form for Degree Evolution

• We derive the final form of the degree evolution partial differential

equation to be

∂k

∂t
= 2mΠi = −εk

t

{
1

2
+ log

(
k

2mt

)}

• Which as k � 2mt we can expand the logarithm to obtain

∂k

∂t
≈ εk

2t
− εk2

2mt
+ εO

(
k

2mt

)2
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Discussion

• Taylor series expansion has preferential attachment and constraints

as the first two terms!

• Higher terms may reveal even more complex corrections to scale

freedom

• The constant ε explains why γ is never exactly 3 even at low k

• The model has been arrived at from fundamental principles and

could explain why nodes preferentially attach
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Conclusions



Conclusions

• Vertex entropy, NVE ′ is useful at eliminating noisy events

• The constraints model more accurately matches real network metrics

• Vertex entropy can be used to build an entropic model of network

growth.

• This model has constraints emerging naturally and explains why γ is

never exactly 3
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