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Background

Mathematical research in Design of Experiments is concerned with
studying the mathematical and statistical properties of an experiment,
usually in being able to gather the most information from the experiment
with fixed resources.
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Background

Often we assume when designing experiments that subjects
(experimental units) are independent.

Particularly, if we apply a treatment to one subject, we generally
assume that the treatment does not affect other subjects. (SUTVA-
Stable Unit Treatment Value assumption)

In my research, I investigate how the structure of relationships
between subjects affects the design of experiments on these subjects.

In a JRSS paper [3] we published a first paper on design for networks,
which we review in this talk as background, and then expand to
current work.

Ben M Parker DOE for Networks September 2017 3 / 54



Introduction

We consider a graph, as a collection of nodes N and edges E .
The nodes represent subjects on which we apply some treatment. We
have |N| = n subjects.
The edges represent some relationship between the subjects.
We allow the relationship between our subjects to be specified by the
adjacency matrix A where Aij = 1 if i and j are related and Aij = 0
otherwise. By convention, Aii = 0.
We assume initially that links are non-directional, such that Aij = Aji ,
i.e. A is symmetrical.

A =


0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0


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Examples of problems we might be interested in

The nodes may be subjects in a marketing experiment.

The links may be a social relationship, such as being “friends” on
Facebook, or “working together” in a statistics group.

The treatments may be different advertising campaigns, such as “Buy
Coke” or “Buy Pepsi” ( or “Smoking Kills!”.)

The responses may be the amount of a products bought by a subject,
or how much the subject likes the product.

Idea behind model:

If a subject is exposed to a treatment, their friend may see this treatment
and their response may be altered (positively or negatively). We assume
that if a relationship exists between two individuals, the response of the
first subject is dependent on the treatment applied to the second.

Ben M Parker DOE for Networks September 2017 5 / 54



Optimal design without any network effect

Model:

Yi = µ+ τt(i) + εi

where

εi are i.i.d with mean 0, variance σ2;

t(i) is the treatment applied to subject i ;

τj are treatment effects for j = 1, . . . ,m;

we assume w.l.o.g that τm = 0 for uniqueness.
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Optimality Criteria

When we design an experiment, we need to consider what we want to
know: for example, we may be more concerned with precise measurement
of the effect of treatment 1 than we are with that of treatment 2.
We assume in this work that we wish to minimise the average variance of
all estimates of pairwise differences of treatment effects:

2

m(m − 1)

m∑
j=1

m∑
l>j

Var(τ̂j − τl).

This is A-optimality for estimating the difference in treatment effects.

For m = 2 treatments, it is clear that the balanced design with an equal
number of subjects given each treatment is optimal.

Ben M Parker DOE for Networks September 2017 7 / 54



The idea

We assume that if we apply a treatment j to a subject, there will be a
network effect of γj to all neighbours of that subject.

For example, if we apply treatment 1 to subject 2, there will be a network
effect of γ1 on subject 1 as well as the standard subject effect on subject 1

from its own treatment.
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Optimal design with network effect

We introduce the

Linear network effect model:

Yi = µ+ τt(i) +
∑
k=1

Aikγt(k) + εi

where

as before t(k) is the treatment given to subject k ;

and now γj is the corresponding network effect, which is the change
in the behaviour on a subject due to giving a connected subject a
particular treatment.

We may also now be interested in the network effects themselves, and can
consider A-optimality for the network effects.
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Example 1

1

(1)

7

(2)

2

(1)

3

(2)

4

(2)

5

(2)

6

(1)

8

(1)

9

(1)

1 0
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By exhaustive search, we find optimal designs for the m = 2 treatment
case are :

{1, 1, 2, 2, 2, 1, 2, 1, 1, 1} for estimating the difference in the subject
effects (i.e. we give treatment 1 to subjects 1,2,6,8,9, and 10 and
treatment 2 to the other subjects).

{2, 2, 1, 1, 1, 1, 2, 2, 2, 1} for optimality in estimating the difference in
the network effects γi .

Note that

The optimal design for estimating the difference in treatment effects
is not balanced; i.e treatments 1 and 2 are not applied to an equal
number of subjects. This is an unusual property in optimal design.

Ben M Parker DOE for Networks September 2017 11 / 54



Neglecting the network effect

Boxplot of efficiencies of balanced designs for 20 random networks:
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Bias of design

In example 1, if we wrongly assumed there was no network effect when in
fact it existed, then for the balanced design {1, 1, 1, 1, 1, 2, 2, 2, 2, 2} which
is optimal in the case there were no network effects, the bias is as

0 0 0.6 0.8
0 0 −0.2 −0.2
0 0 −1 0
0 0 0 −1



µ
τ1
γ1
γ2


If the network effects are large compared to the subject effects, ignoring
network effects might lead to the subject effects being estimated badly
with very large bias.

Important message!

By not taking into account a network effect in our design, our experiment
has higher variance than necessary, and/or biased estimators.
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Example 2: A Social Network

We wish to design an experiment to determine the effectiveness of a
new advertisement.

Some people are sent an amusing video ad-
vert for a type of soft drink (treatment 1),
and some are shown another advert (treat-
ment 2).

The amount of soft drink each of the 20 people buy in the following
week would then be found by a survey.

Interested in how effective the advert is, but also how effective the
advert is at being conveyed to friends of those who saw the advert
(this is known as viral marketing), so 20 people are chosen where the
connectivity structure of their online social network is known.
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Figure: Optimal design for (top) estimating the subject effects of the advert and
(bottom) estimating the network effects of the advert
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Finding the Optimal Design

All properties of the design can be found by calculating the information
matrix. For this example, it turns out to be:

I =



n n1 n2 . . . nm−1
∑

i ni1
∑

i ni2 . . .
∑

i nim
n1 n1 0 . . . 0 n11 n12 . . . n1m
n2 0 n2 . . . 0 n21 n22 . . . n2m
...

...
...

. . .
...

...
...

. . .
...

nm−1 0 0 . . . nm−1 nm−1,1 nm−1,2 . . . nm−1,m∑
i ni1 n11 n12 . . . n1,m−1 n

(2)
11 n

(2)
12 . . . n

(2)
1m

...
...

. . .
...

...
...

. . .
...∑

i nim nm1 nm2 . . . nm,m−1 n
(2)
m1 n

(2)
m2 . . . n

(2)
mm


.

ni is the number of nodes given treatment i .
nij is # of ways of drawing a path of length 1 from a node given
treatment i to one given treatment j .
nij is # of ways of drawing such a path of length 2....
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General Principles for Design Algorithm

X is the design space, the set of all possible assignments of
treatments to experimental units for our experiment

To assess how good a design x ∈ X is we calculate the value of some
optimality criterion f (x)

Typically this will be some function of the Fisher information matrix,
I (x)

e.g A-optimality involves taking the average variance of all unknown
parameters, which corresponds to f (x) = tr(I−1(x)).
D-optimality which minimises the confidence region for a combination
of parameters, can be expressed as f (x) = det(I−1(x))

Finding I , then I−1, and sometimes f () is computationally hard
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The curse of dimensionality

Typically the design space X to search may be large.

For example, if we have n experimental units which each take values
in some set F then the size of the design space will be |F|n, and we
suffer from the curse of dimensionality.

Even if F is the binary set {0, 1} such that each experimental unit
may be assigned one of two treatments, then the size of the design
space may be 2n.

If F is a continuous set (e.g. R or, a set of equivalent size, the
interval [0, 1], the design space is (infinitely) bigger.

In this work we consider unstrucured treaments, so
F = {(1, 2, . . . ,m)n}
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Reducing the design space

Ideally, we evaluate the optimality criterion f (x) at all possible designs
x ∈ X to find the optimal design x∗ = arg maxx∈X f (x), but for large
design spaces and/or criteria that are difficult to calculate, computational
restrictions may mean we can not do this in a reasonable computation
time.
In some cases, analytic results allow designs to be found exactly without a
search algorithm.
However, in general we seek some algorithm that enables us to find the
optimal design (or a design which is near optimal).
In overview, these come in two categories

reducing the complexity of the calculation of f (.)

evaluating a subset of X such that the overall number of calculations
of f (.) is smaller.
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Reducing the complexity of f (x)

Methods includes:

emulation, used extensively within computer
designs, where instead of evaluating a
complicated function f (), we evaluate an
emulator g() , a function which is simpler to
evaluate but we believe has the same properties
such that f (x) ≈ g(x) for all x ∈ X .

Updating formula can also be used in some
problems, where we know that
f (x + z) = f (x) + h(z) for some
easy-to-calculate function h.
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Searching a subset of X

Methods include

Space-filling designs, where a representative sample of
designs in X are evaluated.

many optimisation algorithms, which use the t
previously evaluated designs x0, x1, . . . xt−1 and their
optimality criterion f (x0), f (x1), . . . , f (xt−1), to choose
which design xt should be evaluated next.

Fedorov Exchange algorithms, coordinate exchange
algorithms, simulated annealing, particle swarm
optimisation, many stochastic search algorithms such
as Nelder-Mead, are the subject of research.
Some of these algorithms are deterministic, in that the
choice of xt is mandated, others are stochastic in that
xt is chosen randomly.
To avoid local maximum designs, the initial x0 is often
chosen randomly, even if the rest of the algorithm is
deterministic.
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A network approach for experimental design

Much of the literature in experimental design revolves around trying to
find better algorithms for particular problems. In this work, we do not seek
to find new algorithms, but to suggest how mapping the problem to a
network domain allows us to vastly reduce the number of designs
evaluated in order to allow us to find better designs. Existing algorithms
are still used within this context.
We claim that there are many standard problems in design that can be
abstracted by representation as a network, for example

1 Block Design

2 Row-column design

3 Crossover design

4 etc, etc,
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Simple Blocked Experiment

Block Experimental Units

1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 13 14 15 16

12

3 4

56

7 8

910

11 12

1314

15 16

B1

B2

B3

B4
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Block Exp. Units

1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 13 14 15 16

12

3 4

56

7 8

910

11 12

1314

15 16

B1

B2

B3

B4

Original Problem Network Problem

No of Treatments 2 6

Exp. Units {1, 2, . . . 16} {1, 2, . . . , 16,B1,B2,B3,B4}
Wish to estimate τ1 − τ2 τ1 − τ2
Opt. criterion A As

Restrictions
Can apply either
treatment to any
unit.

Can apply treatments 1,2
to units {1, 2, . . . , 16},
and treatments 3,4,5,6 to
units B1-B4.
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To find the optimal design, we can model for our blocked experiment as

Yi = µ+ τt(i) +
∑

k={1,...,16,B1,B2,B3,B4}

Aikγt(k) + εi , i = 1, . . . , 16

where Aij = 1 whenever there is a link (e.g. A14,B4 = 1), and Aij = 0
otherwise.
By writing bj(i) =

∑
k={1,...,16,B1,B2,B3,B4} Aikγt(k), we can see

immediately that this is equivalent to

Yi = µ+ τt(i) + bj(i) + εi ,

a more familiar representation of a blocked experiment, where bj(i) is
block effect of experimental unit i being in block j . As Aij = 1 if and only
if node i is linked to node j , and this only happens when experimental unit
i is in block j for j = {B1,B2,B3,B4}, we can replace
γt(B1) = γm+1 = b1, γt(B2) = γm+2 = b2, and so on.
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Row Column Design

C1 C2 C3

R1 1 2 3
R2 4 5 6
R3 7 8 9

;

1
2

3

4

5

67

8

9

R1

R2

R3

C1

C2

C3
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Crossover Design

Period
P1 P2 P3

Subject

a 1 2 3
b 4 5 6
c 7 8 9

1

2

3

4

5

6

7

8

9

a b cP1

P2

P3

Ben M Parker DOE for Networks September 2017 28 / 54



Symmetry of labels

For our criteria we are only interested in differences between
treatments

The treatment effects themselves are irrelevant, and treatments are
equivalent up to relabelling.

For example, 1,2,2,3,1 and 1,3,3,2,1 are equivalent.

We can thus reorder any design so that we only evaluate designs
where the first occurrence of label j must come before the first
occurrence of label j + 1.

Ben M Parker DOE for Networks September 2017 29 / 54



Symmetry of graphs

Subgraph  1 Subgraph  2

1

2

3

4

5 1 0

6 9 1 1 1 2

7 8 1 3 1 4

Subgraphs 1 and 2 are exchangeable; i.e for
subdesign A on subgraph 1, and subdesign B
on subgraph 2 (call this [A1,B2]), we need not
also consider [A2,B1] as by symmetry this
design has the same criterion value.
We can reduce our design space greatly if we
can identify subgraphs where the designs are
exchangeable.
This is equivalent to finding an automorphism
for our network, a relabelling or permutation of
the set N such that the edges E are preserved.
This is the Graph Automorphism Problem.
Recently it has been shown (but not yet peer
reviewed!) that this is a hard problem, but is
not (quite) NP-hard.
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Graph Automorphism Problem practically

In practice fast algorithms exist already that can effectively and quickly
find automorphisms in most cases, for example the VF2 algorithm[1],
which in general will find isomorphisms between two graphs G1 and G2.
This algorithm is based on a tree search, where a set of nodes is
maintained where a partial match between subgraphs of G1 and G2 occurs,
and then nodes connected to these subgraphs are considered to see if they
can extend the matching subgraphs.
This algorithm is fast, and implemented by the popular igraph package
(http://igraph.org/) available in many programming languages,
including R.

Ben M Parker DOE for Networks September 2017 31 / 54

http://igraph.org/


General Algorithm for using networks for design

1 Rewrite original problem in network form.

2 Find the set of mappings isos of network.
3 Set k = 1, numeval = 0 and pick initial candidate design x1.

1 Check whether xk = minlex isos(xk), i.e. if xk is the minimum design
in the lexicographical order of all isomorphisms.

2 If so,

evaluate the optimality criterion dk = f (xk)
increment numeval by 1.

3 Set k = k + 1. Pick next candidate design xk according to algorithm of
choice next based on x1, . . . , xk−1 and d1, . . . , dk−1, so that
xk = next[(x1, . . . , xk−1), (d1, . . . , dk−1)].

4 If we have reached a stopping criterion, i.e if
stop[(x1, . . . , xk), (d1, . . . , dk), numeval] = 1 for some stopping criterion
stop, then stop, otherwise Repeat from 1.
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Lexicographical order means a dictionary order such that

111 < 112 < 121 < 122 < 211 < 212 < 221 < 222

Typical choices of the next algorithm might be the Fedorov exchange
algorithm, an exhaustive search, etc.

Typical choices of the stop criterion might be

Stop if k = k1 or numeval = k2 representing some fixed budget on the
number of designs examined or function evaluations made,
or that max(dk−t , . . . , dk) = dk−t , i.e. we have not seen an
improvement in the last t steps.
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Example 1
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(1)

3

(2)

4

(2)

5

(2)

6

(1)

8
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(1)

1 0

(1)

We calculate the same optimal design, but evaluate the information matrix
236 times as opposed to 507 times, and use a processing time of 0.02

seconds as opposed to 0.04 seconds.
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Example 2
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524287 without isomorphisms, 221183 with.
58.58s without, opposed to 31.56 with.
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Example 3: Non-rectangular field trials

Most field trial experiments focus on rectangular fields. Let us assume we
have an irregularly shaped field divided into plots as shown below 1.

1 2 3

4 5

6 7 8 9 10

11 12 13 14 15

Table: An irregularly shaped collection of plots in a field.

We perform a trial on 3 different fertilisers, to estimate with minimum
average variance the difference between fertilizer (subject) effects.
We assume that any fertiliser applied might leach to any of the 8 possible
plots that touch the treated plot, including those that only touch at
corners.
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1

(1)
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(1)
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(2)
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1 1
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1 2
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1 3
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1 5
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Figure: The top number is the plot number, and the bottom number the optimal
treatment allocation. The optimal function value of the third criterion is 0.4055.
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Example 4: A crossover trial with planned dropouts

In a four period crossover trial, assume that one participant will not be
able to take the treatment in the third period of the trial.

Period
1 2 3 4

Subject

a 1 2 3 4
b 5 6 7
c 8 9 10 11
d 12 13 14 15

We use each subject/period combination as a node in our network

Modify our methodology such that links are uni-directional;

Perform exhaustive search as before to minimise variance in our
subject effects.
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Period
1 2 3 4

Subject

a 1 1 2 1
b 1 3 2
c 2 2 3 1
d 3 3 3 2

The optimal design has optimality criterion 0.4128. Note that it is quite
different in form from usual cross-over designs.
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Description n No. auto-
morphisms

Evaluations
without auto-
morphisms

Evaluations
with auto-
morphisms

Time
without
automor-
phisms

Time with
automor-
phisms

Small social network (1) 10 8 507 236 0.04 0.02
Small social network 10 1 511 511 0.04 0.04
Larger social network (2) 20 8 524,287 221,183 58.58 31.56
Block design with neighbour
effects (3)

12 384 535,008 18,766 108.52 33.68

Non-rectangular field trial (3) 15 2 2,368,741 1,581,572 279.6 197.58
Crossover trial with
dropouts(4)

15 6 2,262,800 904,555 283.86 134.26
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Description n No. auto-
morphisms

Time without
automor-
phisms

Time with
automor-
phisms

Small social network (1) 10 8 0.04 0.02
Small social network 10 1 0.04 0.04
Larger social network (2) 20 8 58.58 31.56
Block design with neighbour
effects (3)

12 384 108.52 33.68

Non-rectangular field trial (3) 15 2 279.6 197.58
Crossover trial with
dropouts(4)

15 6 283.86 134.26
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Computational Justification: Complexity without
isomorphisms

Recall that |X | = nm. For most optimality criteria, when calculating f (x),
we calculate the Fisher information matrix and invert it to find a
variance-covariance matrix, then take some calculation of this final matrix.

The calculation of the Fisher information matrix from FTF where X
is an n × (2m) matrix is O(n2m)

The Fisher information matrix is of size 2m× 2m. Inverting the matrix
depends on the algorithm used, but is O((2m)k) where 2 < k ≤ 3.

Calculating the optimality criterion from the 2m × 2m
variance-covariance matrix depends on what criterion is used; the
trace (A-optimality) is O(m), taking the determinant (D-optimality)
will typically be O(mk) where 2 < k ≤ 3.

For our designs using A-optimality, we have many more experimental units
than treatments (n >> m), so the limiting step is the first one and
therefore f (x) has computational complexity of O(n2m).
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Complexity of new framework

The complexity of the overhead in the new framework algorithm involves

1 the initial time to find z isomorphisms;
2 the computational cost of checking whether each design is lowest

lexicographically amongst all possible isomorphic designs.
We apply an isomorphism to reorder each design, each O(n).
We do this z times (once for each isomorphism), and then sort the
resulting list of isomorphic designs to find the lexicographically
smallest, which is O(z log z) for a good sorting algorithm;
Overall cost of step 2 is O(nz2 log z).

Thus the computational complexity of checking that a design is valid, and
evaluating f (x) if so, is O(nz2 log z + n2m/z) where the second term is
because we calculate f (x) for one design in every z .
The effectiveness of our new method compared to the old depends on the
ratio

z2 log z + nm/z

nm

Thus z must be small compared to nm but not too small.
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Evaluating blocked designs

We evaluate several blocked experimental structures:

1 3 blocks of size 3 (n = 9), with 3 treatments. The optimal designs
are randomised complete block designs;

2 4 blocks of size 3 (n = 12), with i) 3 and ii) 4 treatments. The
optimal designs are i) randomised complete block designs and ii)
balanced incomplete block designs;

3 A row-column structure with 3 rows and 3 columns, each row-column
intersection containing a single experimental unit, with 3 treatments.

The optimal designs are Latin Squares of size 3:

1 2 3

2 3 1

3 1 2

4 A row-column structure with 4 rows and 4 columns, each row-column
intersection containing a single experimental unit, with i)3 and ii)4
treatments. The optimal designs for ii) are Latin Squares of size 4.
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Results for blocked designs

Ex. Description n m Number
of isomor-
phisms

Evaluations
without iso-
morphisms

Evaluations
with isomor-
phisms

Time with-
out isomor-
phisms

Time with
isomor-
phisms

1 3x3 Blocks 9 3 1,296 94 2,925 2.52 1.54
2i 4x3 Blocks 12 3 82,944 379 86,126 55.44 310.02
2ii 4x3 Blocks 12 4 82,944 1,808 605,960 378.82 1051.54
3 3x3 Row Column 9 3 72 241 2,807 1.9 0.48
4i 4x4 Row Column 16 3 1,152 34,873 7,123,656 6051.12 493.32
4ii 4x4 Row Column 16 4 1,152 1,610,909 170,863,644 141456.6 14123.94
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Results for blocked designs

Ex. Description n m Number
of isomor-
phisms

Time with-
out isomor-
phisms

Time with
isomor-
phisms

1 3x3 Blocks 9 3 1,296 2.52 1.54
2i 4x3 Blocks 12 3 82,944 55.44 310.02
2ii 4x3 Blocks 12 4 82,944 378.82 1,051.54
3 3x3 Row Column 9 3 72 1.9 0.48
4i 4x4 Row Column 16 3 1,152 6,051.12 493.32
4ii 4x4 Row Column 16 4 1,152 141,456.6 14,123.94

We do not claim that these designs would be sensibly found via this
method, as the solutions are known analytically, but we seek to
demonstrate the benefits of isomorphisms via improvements in calculations.
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Current work - exploiting symmetries

(This last part from upcoming thesis from V. Koutra.)

Example from “Symmetry in Complex Networks”,
MacArthur,Sánchez-Garćıa, Anderson,2008[2].
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Conjecture

If we

decompose the network into a sets of nodes which exhibit symmetries
and a skeleton (remainder).

find an optimal design d∗ for subjects in the skeleton ignoring other
nodes

find an optimal design d for the whole network, with d∗ fixed on the
skeleton.

then d is an optimal design.

The importance of this is that it allows designs on social networks to be
found much more quickly.
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A social network consisting of 1025 vertices and 1043 edges and is
illustrated. The edges indicate the ties among PhD students and their
advisors in theoretical computer science (Johnson, 1984).
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NSYM- an algorithm for faster design?

1 Obtain the graph skeleton

2 Find an (near-) optimal design on the graph skeleton using the
systematic exchange algorithm.

3 1 Make a different allocation of the treatments under φ1 and φ2.

φ1: Have a balanced allocation of the treatments within each vertex
orbit, and ultimately achieve an overall balance along all orbits;
φ2: Have the same treatment (which will be randomly selected among
the different treatments) allocated to all the units within the same
vertex orbit.

2 The design is constructed by fixing the allocation on the skeleton (Step
I) as well as on the vertex orbits (Step II). The resulting design is
expected to be near-optimal.
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φ1
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φ2
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Conclusions

Recapped work on linear network models

Presented a method we can use networks to find designs for
experiments that have no overt network form.

Condsidered a general procedure for finding designs which help us to
ignore isomorphisms and remove failed effort.

Presented some algorithms that seem to be effective in finding
near-optimal designs quicker for networked experiments: both
experiments on real networks, and experiments where we induce a
networked structure.

A unifying method applicable on many common structures where we
perform DOE.

Software in early phase available to do this readily in R.
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