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Generative models for 
network structure: Static

• Generates single network 
snapshots 

• Examples: Erdős–Rényi, 
Stochastic Block Model, 
Configuration Model, ERGMs 

• Community detection, centrality



Generative models for 
network structure: Dynamic

• Generates network by addition of  
nodes and links 

• Investigate how network 
structural features emerge



Example: Barabási-
Albert model

Characterised by:

Growth: network grows by iterative 
addition of  a single node with    

neighbours
m

m = 2

Preferential attachment: new node 
connects to existing node i with 

probability             .∝ ki

i.e. better connected nodes likelier to 
attract new links



Examples of  evolving 
networks



Usual modelling 
assumptions

• Network grows using a single constant mechanism 

• Good for deriving theoretical results… 

• … but not great for making inferences from real data



Our aim
To relax the usual modelling assumptions made, 

to better comprehend a model governing a 
network’s evolution

“Single mechanism”        more than one 
mechanism, to uncover the roles of  each of  them.

“Constant”        changing in time, to understand 
how these roles may change over time



Model for evolving 
networks
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Attachment probabilities

pi ∝ f(ki)
Function of  node 
i’s degree, e.g. BA 

model

pi ∝ 1
Random/neutral 
model. All nodes 

equally likely

pi ∝ f(ηi)
Function of  some 

other intrinsic 
node property



Problem: How do we quantify how 
good a fit a model is to real data?



Moving away from 
descriptive statistics
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Problem: different models may 
generate networks with similar 

descriptive statistics!



Different approach: 
Model likelihood

Likelihood of  model given observation = probability of  seeing 
observation given model

42

31

Likelihood of  random/uniform model 
given by:

ℙrand(Choose node 2) =
1
3

Likelihood of  BA preferential 
attachment model given by:

ℙBA(Choose node 2) =
2

1 + 2 + 1
=

1
2

[R. Clegg, B. Parker, M. Rio 2016: Likelihood-based assessment of dynamic network models]



Likelihood of  model given observed 
period of  network’s evolution

Network (random variable): 

Observations (snapshots):

G := Gt

g = (g1, g2, …, gn)
Model possibly with parameters: M(θ)

L(M(θ) |g) =
n

∏
t=1

ℙ(Gt = gt |Gt−1 = gt−1, …, G1 = g1, M(θ))

[R. Clegg, B. Parker, M. Rio 2016: Likelihood-based assessment of dynamic network models]



Likelihood: Remarks

• Quickly calculated, compared to generating networks 

• Given a number of  models, can define the ‘best’ as that which 
has the highest likelihood 

• For models with parameters, can find maximum likelihood 
estimators for params



Assumption relaxation 1: Combining 
attachment probabilities

Idea: attachment in networks likely to be driven by a 
mixture of  factors

Random 
attachment Barabási-Albert

Example: 

This example explored in [Ghoshal, Chi, Barabási 2014: Uncovering the role of  elementary processes in network evolution]



More formally:

pi = ∑
l

βlp(l)
i with ∑

l

βl = 1

a weighted combination of  models 

[R. Clegg, B. Parker, M. Rio 2016: Likelihood-based assessment of dynamic network models]

p(l)
i probability of  choosing node      according to 

model  
i

l
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Can address the earlier problem 
with descriptive statistics using 

likelihood measure!



Distinguishing using maximum 
likelihood estimation

pi = βpRP
i + (1 − β)pBA

i

Having generated 
artificial networks using:

We can accurately recover 
the proportion           as an 

MLE!
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Real data example: Math 
Overflow Social Network

• Q&A site for mathematicians with problems 

• Nodes are users 

• An undirected edge between node A and B if  A 
answers a question by B, A comments on B’s answer 
or question 

• Multiple edges collapsed 

• Models components tested: BA, static rank preference

Dataset from [A. Paranjape, A. Benson, J. Leskovec 2017: Motifs in temporal networks]



Real data example: Math 
Overflow Social Network
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Real data example: Math 
Overflow Social Network
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Remarks

• Mixed model often generates network with better match on stats 
than single model components alone 

• Process only gives the highest likelihood mix of  the components 
tested - not guaranteed to be a good model.  

• Searching through parameter space becomes expensive with more 
than two model components. Candidate problem for ML techniques. 

• Work in progress: applying simulated annealing to model fitting



Assumption relaxation 2: 
Time varying models

• Networks may have changing 
growth regimes over time 

• Can these changes be reflected in 
our modelling of  networks?



Time varying model
For a set of  models         which, given a network topology, assign 

probabilities to each node, introduce time varying model:

M(t) =

M0 t ∈ [t0, t1)
M1 t ∈ [t1, t2)
⋮ ⋮

Mk t ∈ [tk, tk+1)

Mj



Are such changes in a network’s growth reflected in 
measurements we take of  it?
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Investigation with artificially 
generated networks

• Generate networks with different growth regimes 

• What does this look like when we look at descriptive 
statistics? 

• Can we detect these changes using likelihood-based 
techniques?



Tests on generated 
networks

More BA

More random
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Conclusions and future 
directions

• Mixed models allow us to uncover the different 
attachment mechanisms at play in a network’s growth 

• Fitting to different time periods may reveal how these 
mechanisms can change over time 

• Currently developing a likelihood measure aimed at 
detection of  changes in a network’s growth regime 

• Working on use with real data



Thank you for listening! 
What are your questions?

n.a.arnold@qmul.ac.ukgithub.com/narnolddd @narnolddd

mailto:n.a.arnold@qmul.ac.uk
https://github.com/narnolddd

