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Outline

• Random geometric graphs (RGG) and wireless applications

• Connectivity in soft random geometric graphs (SRGG)
Phys. Rev. E 93, 032313 (2016)

• Line of sight with fractal boundaries
ISWCS 2015, 636-640.

• Nonuniform node distributions
J. Stat. Phys.172, 679-700 (2018).

• Outlook: Some current and future generalisations.



Spatial networks

Nodes (and sometimes links) have a location in space. Other (eg social or
protein interaction) networks can be modelled using a “latent space.”



Poisson point processes

A point process is a random set of points Φ. We denote the number of points
in a set A as

Φ(A) = ]{Φ ∩A}
Then the Poisson point process (PPP) with intensity measure Λ is defined by

1. Φ(A) ∼ Poi(Λ(A)), the discrete Poisson distribution with mean Λ(A).

2. If a finite collection of subsets Ai is disjoint, Φ(Ai) are independent.

A uniform PPP has Λ = ρ× Leb in some domain.

The main calculational tools for PPP are:

Campbell’s theorem:

E
∑
ξ∈Φ

u(ξ) =

∫
u(ξ)Λ(dξ)

Probability generating functional:

E
∏
ξ∈Φ

u(ξ) = exp

[∫
(u(ξ)− 1)Λ(dξ)

]



Random geometric graphs

Introduced in 1961 by E. N. Gilbert:

Recently random graphs have been studied as models of communica-
tions networks. Points (vertices) of a graph represent stations; lines
of a graph represent two-way channels. . . . To construct a random
plane network, first pick points from the infinite plane by a Poisson
process with density D points per unit area. Next join each pair of
points by a line if the pair is separated by distance less than R.

Then:

Communications networks Many authors, since 1980s

Connectivity threshold Penrose (1997), Gupta & Kumar (1999)

Books/reviews:

Meester & Roy (1996) Continuum percolation

Penrose (2003) Random geometric graphs

Franceschetti & Meester (2008) Random networks for
communication

Walters (2011) Random geometric graphs

Barthélemy (2011) Spatial networks

Haenggi (2012) Stochastic geometry for wireless networks



Example: A triangle

Isolated nodes occur mostly near the corners...



Dependence on density and geometry

Notation: Mean degree K, (full) connection probability Pfc.

We see two main transitions as density increases:

Percolation Formation of a cluster comparable to system size:
Largely independent of geometry. K = 4.5122 . . . in 2D

Connectivity All nodes connected in multi-hop fashion:
Strongly dependent on geometry. K ≈ lnN .

Pfc as a function of density and geometry?



Mathematics of connectivity in RGG

Rigorous results are for N →∞, scaling at least two of r0, ρ and L.

For the random geometric graph in dimension d ≥ 2, it was shown by Penrose,
and by Gupta & Kumar, that the r0 threshold for connectivity is almost
always the same as for isolated nodes.

In turn, isolated nodes are local events, so described by a limiting Poisson
process: The probability of a node having degree k is given by

P (k) =
Kk

k!
e−K

where K is the mean degree, equal to ρπr2
0 for the 2D RGG. This leads to

Pfc ≈ exp
[
−ρV e−ρπr2

0

]
where V is the “volume” (ie area) of the domain.

Remarks: At fixed probability and connection range, V increases exponentially
with ρ; also most isolated nodes are in the bulk when d = 2. The number of
isolated nodes at corners cannot be Poisson.



Wireless network considerations

Mesh architectures Multihop connections rather than direct to a base sta-
tion: Reduces power requirements, interference, single points of failure.

Random node locations In many applications (sensor, vehicular, swarm robotics,
disaster recovery, . . .) device locations are unplanned and/or mobile.

Network characteristics Full connectivity, k-connectivity (resilience), alge-
braic connectivity (synchronisation), betweenness centrality (importance,
overload).

Useful extensions:

Soft random geometric graphs Extra randomness: Form a link with (iid)
probability H(r) ∈ [0,1], a function of mutual distance r.

Nonuniform Choose points using a PPP with a nonuniform measure; realistic
for mobility and complex geometries.

Anisotropy Orientations as well as positions.

Line of sight condition Impenetrable and/or reflecting boundaries:
Particular relevance to millimetre waves for 5G.

Directed graphs Ability to transmit/receive need not be symmetric.

Remark: The last three extensions violate the metric space axioms.



Soft random geometric graphs

Penrose (2016) showed that for connection functions that are symmetric,
positive at the origin and stretched exponentially decaying (also radially sym-
metric and monotonic for d > 2), the number of isolated nodes is asymptoti-
cally Poisson distributed. Further, if its support is sufficiently small, the (full)
connection probability is asymptotically that of there being no isolated nodes.
(See also Mao & Anderson 2013, Iyer arxiv 2015).

Here we assume the resulting formula is approximately valid for finitely many
nodes, including for connection functions with unbounded support:

Pfc ≈ exp

[
−
∫
ρe
−
∫
ρH(r12)dr1dr2

]
where ρ is the density, H(r) is the iid probability of connection between nodes
with mutual distance r and the integrals are over the domain V ⊂ Rd.

We want to approximate Pfc for finite ρ, taking into account boundaries.

In progress: d = 1, eg vehicular networks!



Specific connection functions

The connection function is the complement of the outage probability,

H(r) = P(SNR > q)

neglecting interference, with the signal to noise ratio (SNR) proportional to
r−η|h|2, path loss exponent 2 . η . 6. Simplest is Rayleigh fading (diffuse
signal), for which the channel gain |h|2 is exponentially distributed, giving

H(r) = exp[−(r/r0)η]

Similar, though more involved: MIMO, Rician (specular plus diffuse), . . .
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Connectivity and boundaries

For large ρ, Pfc is dominated by the regions of small connectivity mass

M(r2) =

∫
H(r12)dr1

Exactly on the boundary, this is given by

MB = Hd−1ωB

where

Hm =

∫ ∞
0

H(r)rmdr

is the mth moment, and ωB is the (solid) angle associated with the boundary
component B, eg π/2 for a right angled corner, π for an edge.

Analysing the vicinity of boundaries more carefully. . .



General formula

Pfc = exp

[
−
∑
B

ρ1−iBGBVBe
−ρωBHd−1

]
where iB is the boundary codimension, VB is its d− i dimensional volume, and
GB is the geometrical factor

GB i = 0 i = 1 i = 2 i = 3
d = 2 1 1

2H0

1
H2

0 sinω

d = 3 1 1
2πH1

1
π2H2

1 sin(ω/2)
4

π2H3
1ω sinω

where the 3D corner has a right angle.

Curved boundaries? To leading order, modification of the exponential but
not the geometrical factor:

P2,1 = . . . e−ρ(πH1−κH2)

P3,1 = . . . e−πρ(2H2−κH3)

where κ is (mean) curvature.

Summary: We can do arbitrary convex geometries with piecewise smooth
boundaries; H(r) appears only via a few moments.



Example: A square

The previous formula gives

1− Pfc ≈ L2ρe−πρ +
4L
√
π
e−

πρ

2 +
16

πρ
e−

πρ

4



Phase diagram

Testing convergence of
1− Pfc∑

B . . .



Fractals: Theory and applications

• Mathematical analysis: Zoo for topologists

• Dynamical systems: Attractors, Repellers, basin boundaries

• Biology: Trees, lungs, . . .

• Natural environment: Coastlines, rivers, mountains, clouds

• Built environment: Land use, transport networks

• Realistic graphics for the above, art creation and analysis

• Fractal antennas and arrays: High ratio of length to volume, wide band

Biological and artificial fractals both solve optimisation problems.



Fractal dimensions

Box dimension Cover a set F with N(ε) boxes of size ε. Then take limit

DB(F ) = lim
ε→0

lnN(ε)

− ln ε

if it exists. Finite range of ε for real objects. Popular for numerics.

Hausdorff dimension Cover with boxes of size ri ≤ ε. Then the s-dimensional
Hausdorff measure

Cs
H(F ) = inf

{ri}

∑
i

rsi

switches from ∞ to 0 at a single value of s, the Hausdorff dimension
DH(F ). Popular for rigorous mathematics. DH(F ) ≤ DB(F )



Self-similar fractals

Similarity transformation S: Combinations of dilations, rotations, reflec-
tions, translations. Choose some similarity transformations Si with scale fac-
tors 0 < ri < 1. Then, there is a unique compact set F :

F = ∪iSiF

Open set condition (OSC): There is an open set U so that ∪iSiU ⊂ U
disjointly. Under the OSC,

DB(F ) = DH(F ) = DS(F )

where the similarity dimension satisfies

∑
i

rDS(F )
i = 1

Example: Middle third Cantor set, D = ln 2
ln 3

.



RGG with fractal boundaries I

Now, we return to the fixed connection model, but with a line of sight (LOS)
condition.

Construct two classes of fractals, F2(θ) with θ ∈ [0, π/4]
and F3(θ) with θ ∈ [0, π/6].
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Then, make four copies and rotate to enclose a region.



RGG with fractal boundaries II

Distribute nodes randomly, connect with LOS condition.

F2(0.4) F3(0.3)

F2(0.7) F3(0.5)



Connectivity paradox

For large values of θ, there are nodes near the boundary that cannot make a
LOS connection. These increase with density.

Assuming we are at high enough density for the interior to be connected, the
self-similarity gives a scaling relation for Pfc:

Pfc(r
−dρ) = Pfc(ρ)n

where n ∈ {2,3} is the number of transformations defining the fractal. Try

Pfc = exp
[
−a(ρ)ρβ

]
giving

a(r−dρ)r−dβ = na(ρ)

Choosing β = D/d and recalling r−D = n,

a(r−dρ) = a(ρ)

So, log periodic; likely approximately constant:

Pfc ≈ exp
(
−aρD/d

)



Numerical confirmation

Note agreement for both small and large Pfc
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Nonunifom measures

Now, nodes are distributed with respect to a more general intensity measure.

Motivation:

• Non-uniform densities arise naturally from mobility

• Many natural and built environments can be described as fractal

It is likely that strong nonuniformities will affect the RGG properties of

1. Poisson distribution of isolated nodes

2. Relation between isolated nodes and connectivity

Penrose (arxiv 2015) on inhomogeneous random graphs gives Poisson results
assuming H(r) < C < 1 (unrealistic), also ε-homogeneous, that is

inf
x

∫
H(|x− x′|)Λ(dx′) ≥ ε sup

x

∫
H(|x− x′|)Λ(dx′)

If this holds uniformly as the connection range shrinks for the RGG, and the
inf/sup are taken over the support of Λ, we say the measure is Almost Uniform
(AU). This is close to a definition by Studenỳ (1983).



Models

We consider five models in detail:

• Uniform square: AU and smooth.

• A unit square with density 4xy: Non-AU and smooth

• A self-similar measure splitting the square into four equal quadrants, with
measures p2, p(1−p), p(1−p), (1−p)2 for some 0 < p ≤ 0.5 (here p = 0.3).
Non-AU and fractal.

• Sierpinski triangle: AU fractal, finitely ramified.

• Sierpinski carpet: AU fractal

We also consider power law densities cxα for x > 0 in one dimension: non-AU,
smooth, finitely ramified.



Effect on connectivity

Nonuniformity makes connectivity more “random,” ie, the transition is spread
over a much greater range of densities.
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Connectivity and isolated nodes

Middle: η =∞, bottom: η = 2

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral
 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Pfc
No iso

Integral

Integral formula OK, but other contributions to lack of connectivity.



Quantifying non-Poissonness

Given a discrete distribution Pj for j = 0,1,2, . . . we can quantify non-
Poissonness using factorial cumulants:

qn =
dn

dtn
lnE(tX)

∣∣∣∣
t=0

of which the first few are

q1 = P̃1

q2 = 2P̃2 − P̃ 2
1

q3 = 6P̃3 − 6P̃2P̃1 + 2P̃ 3
1

q4 = 24P̃4 − 24P̃3P̃1 − 12P̃ 2
2 + 24P̃2P̃

2
1 − 6P̃ 4

1

where P̃j = Pj/P0.

For Poisson, all qn = 0 for n > 1.



qn numerics

Middle: η =∞, bottom: η = 2
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Nonuniform distributions with η =∞ have most deviations from Poisson.



Occurrence of small clusters

Middle: η =∞, bottom: η = 2
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Sierpinski triangle with η =∞ has most clusters.



Small clusters - first steps

Let’s have a RGG in 1D with density ρ(x) = cxα for x > 0 and study isolated
nodes. H(r) is the connection probability, assumed unit disk. H̄ = 1−H.

The expected number of isolated nodes is∫ ∞
0

ρ(x) exp

[
−
∫ ∞

0
H(|x− y|)ρ(y)dy

]
dx = c−α exp

[
−

c

α+ 1

]
Γ(α+ 1)

assuming high density and hence ignoring contributions for x > 1.

The expected number of 2-clusters is∫ ∞
0

∫ ∞
0

ρ(x)ρ(y)H(|x− y|) exp

[∫
(H̄(|x− z|)H̄(|y − z|)− 1)ρ(z)dz

]
dxdy

(modifying a formula of G. Last). Again assuming high density this becomes

c−2α

α+ 1
exp

[
−

c

α+ 1

]
Γ(2α+ 2)

Thus the ratio is proportional to c−α so 2-clusters become rarer more quickly
at higher α (more nonuniform).



Connectivity for the 1D power
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Outlook
Soft random geometric graphs are more realistic and well-behaved.

Inhomogeneous measures are more realistic, but may break Poissonness of
ioslated nodes.

Sierpinski triangle (finitely ramified) has more large clusters.

Analysis is more challenging; these models are far from understood yet.

Other results/in progress: Non-convex domains, betweenness, interference,
mobility, spectrum . . .

Mitigate lack of connectivity: Power adaptation? Other network properties?


