

Energy Efficiency Evaluation Framework for Ultra Dense 5G RAN

Hao Fu and Prof. Timothy O'Farrell The University of Sheffield

Content

Introduction

Future network expectations

System Model

- Network Architecture and Channel Model
- Power model

Energy Efficiency Evaluation Framework

• Figures of merit

***** Simulation Results

- Homogeneous RAN densification
- Pico-RAN densification with different schedulers

Conclusions

Introduction

***** Future 5G RAN expectations

- Higher capacity expectation
- Lower energy consumption expectation
- Densified macro-RANs no longer meet these expectations
- Densified small cell RANs become appealing

***** Ambiguity in the energy efficiency (EE) metric

- EE metric in [bit/J]
- No indication of respective capacity and energy consumption conditions
- A comprehensive framework required

✤ Network architecture

- Base station (BS) technologies: macro-/micro-/pico-BSs
- User equipment (UE) density of 300 UEs per km² (medium traffic intensity), and camp to the nearest BS
- Schedulers: Round Robin (RR), Maximum SINR (MSINR) and Proportional Fair (PF)

Channel model

- Downlink (DL) of the Long Term Evolution (LTE) network
- Path loss model ^[1]

 $PL^{(x)} = \beta^{(x)} + \zeta^{(x)} log_{10}(dist), \ x = LoS \ or \ NLoS$ $\beta^{(x)} \text{ is a dimensionless constant}$ $\zeta^{(x)} \text{ is the path loss exponent}$ $dist \ \text{is the distance between terminals}$

Multipath fading: identical and independent distribution (i.i.d) in the frequency domain, and Doppler fading in the time domain

^[1] 3GPP, "TR 36.828: 3rd generation partnership project; technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation (release 11)", V11.0.0, 2012-06

 \bigcirc Cell edge \blacktriangle BS \bullet UE

Figure 1. RAN schematic

***** Systematic parameter table^[1]

BS technology	Macro	Micro	Pico
BS/UE Height [m]	15/1.5	4.5/1.5	3/1.5
Carrier frequency [GHz]	2	2	2
Channel bandwidth[MHz]	20	20	20
RB number/TTI	100	100	100
Maximum antenna gain [dBi]	16	9	0
$eta^{(LoS)}$	30.8	34.02/4.02	41.1
$\zeta^{(LoS)}$	24.2	22/40	20.9
$eta^{(NLoS)}$	2.9	30.5	32.9
$\zeta^{(NLoS)}$	42.8	36.7	37.5

^[1] 3GPP, "TR 36.828: 3rd generation partnership project; technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation (release 11)", V11.0.0, 2012-06

***** BS power consumption model

- BS architecture^[2]
 - Consists of backhaul, power supply, cooling system and radio frequency (RF, includes baseband, transceiver, power amplifier) units

Figure 2. Base station architecture

^[2] Abdelrahman Arbi, Timothy O'Farrell, Fu-Chun Zheng and Simon Fletcher, "Toward Green Evolution of Cellular Networks by High Order Sectorisation and Small Cell Densification", in *Interference Mitigation and Energy Management in 5G Heterogeneous Cellular Networks*, Jan 2017
mVCE 2018, London, 21st September 2018
6/14

***** BS power consumption model

• Formula derived and enhanced from the Green Radio Project^[2]

$$P_{site} = P_{bh} + \left(\frac{3.4121}{EER} + 1\right) \frac{n_s n_t}{\eta_{ps}} \left(\hat{P}_{bb} + \hat{P}_{trx}\right) + \frac{n_s n_t \hat{P}_{tx}}{\eta_{cl}} \left[\left(\frac{3.4121}{EER} + 1\right) \frac{\sqrt{\alpha OBO}}{\eta_{ps} \hat{\eta}_{pa}} - \frac{3.4121}{EER} \alpha \right]$$
$$OBO = \frac{P_{sat}}{\hat{P}_{tx}} \quad \eta_{pa} = \sqrt{\frac{P_{tx}}{P_{sat}}} \hat{\eta}_{pa} \qquad P_{tx} = \alpha \hat{P}_{tx}$$

Power parameters table

BS technologies	Macro	Micro	Pico
backhaul power P_{bh} [W]	10	10	10
energy efficiency ratio EER (cooling)	11	-	-
sector/antenna count per site n_s/n_t	1/1	1/1	1/1
peak baseband power \hat{P}_{bb} [W]	30	27	3
peak transceiver power \hat{P}_{trx} [W]	13	6.5	1
peak transmission power \hat{P}_{tx} [W]	40	6.3	0.13
cable efficiency η_{cl}	0.5	0.79	1
power supply efficiency η_{ps}	0.85	0.85	0.85
peak power amplifier (PA) efficiency $\hat{\eta}_{pa}$ (%)	70	77	93
normalised traffic load activity factor α	100%	100%	100%/10%

^[2] Abdelrahman Arbi, Timothy O'Farrell, Fu-Chun Zheng and Simon Fletcher, "Toward Green Evolution of Cellular Networks by High Order Sectorisation and Small Cell Densification", in *Interference Mitigation and Energy Management in 5G Heterogeneous Cellular Networks*, Jan 2017

***** BS power consumption model

Power model traffic-dependent characteristics

Energy Efficiency Evaluation Framework

Include capacity, energy consumption, and energy efficiency performance

***** Metrics:

- S_i = throughput of RAN *i* in [*bit*/*s*], *i* = 1, 2
- P_i = power consumption of RAN *i* in [*W*], *i* = 1, 2
- A_i = area of RAN *i* in $[m^2]$, *i* = 1, 2
- ***** Existing energy efficiency metric: $EE = \frac{S_i}{P_i}$
- Proposed ratio based figures of merit^[3]
 - Data Volume Gain: $DVG = \frac{S_2/A_2}{S_1/A_1}$
 - Energy Consumption Gain: $ECG = \frac{P_1/A_1}{P_2/A_2}$
 - Energy Efficiency Gain: $EEG = ECG \times DVG = \frac{S_2/P_2}{S_1/P_1}$

RAN Densification Results

- Reference case: macro-RAN with inter site distance (ISD) of 500m, RR scheduling
- Experiment A: Homogeneous RAN densification with different BS technologies (macro-/micro-/pico- RAN), scheduled by RR

Figure 5: Homogeneous RAN schematic of ISD 350m (left), 100m (middle), and 50m (right), equivalently to 10, 100, and 460 cells per km²

RAN Densification Results

Experiment A: Homogeneous RAN densification with different BS technologies (macro-/micro-/pico- RAN), scheduled by RR

Figure 6: Figure of merit results of homogeneous network densification comparing BS technologies

***** Remarks:

- Optimum cell density at 10,000 cells per km² for DVG due to LoS interference
- ECG reduces continuously due to the increasing in the cell count
- Optimum cell density at 80 cells per km² for EEG due to the massive ECG reduction exceeding DVG improvement

Scheduling Results

- Reference case: macro-RAN with inter site distance (ISD) of 500m, RR scheduling
- Experiment B: Homogeneous pico-RAN densification with different schedulers (MSINR, RR, PF)

Figure 7: Figure of merit results of homogeneous network densification comparing schedulers

* Remarks:

- Scheduling gains in DVG and EEG converge at approximately 2000 cells per km² due to the lack of user diversity
- Scheduling does not affect ECG when all RBs are used

Conclusions

- Small cell RANs have better performance than macro-RANs
- RAN Densification
 - Enhances pico-RAN capacity up to 45x with RR at ISD of 10 m
 - Further densification leads to capacity degradation due to LoS interference and distance limitation
- Scheduler
 - User diversity gain in capacity and energy efficiency: up to 1.8x and 1.3x for MSINR and PF, respectively, comparing with RR at low and medium cell density
 - No impact on RAN energy consumption
- Next step: heterogeneous network with sparse small cell deployment

Thank you !

Any questions?

mVCE 2018, London, 21st September 2018