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Motivation

Network is not static but dynamical.

Node will have many different types of labels. Different types of
nodes behave differently.

Network has many small world effect, for example, large
clustering coefficient, scaling of communities.

Examples: Shareholder Network
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Shareholder Network Introduction

‘The divorce of ownership from the control of modern
corporation has created the ‘quasi-public’ corporation.’
— Berle and Means [5]

Networks in an economics context and complex system have
proved useful [2, 11, 1]

In our work, we use complex network methods to study the
investment characteristics of different types of shareholders.
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Data Source

Data from BvD — Bureau van Dijk
https://www.bvdinfo.com/en-gb

Amadeus contains comprehensive information on
around 21 million companies across Europe. You can
use it to research individual companies, search for
companies with specific profiles and for analysis.

Snapshot of the data:
Company name, shareholder’s name and shareholder type
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Data Capture

▶ BvD data extremely expensive to buy
▶ Used college licence which allows limited numbers of

downloads
▶ Data downloaded in small pieces then joined together
▶ Focus initially on small countries: Turkey, The Netherlands

Chosen because of size yet difference in their context
Networks for larger countries now being constructed

6 / 31



Data Structure
BvD (Bureau van Dijk) lists changes in share structure.
For each change we have

▶ Shareholder making change
▶ Company in which shareholding is changed

— Companies can also be shareholders
▶ Time change noted in database

— may not be time at which transaction occurred
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Projected Networks
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Degree Distributions
P (k) =

N(k)

N
, (1)

The powerlaw asymptotics P (k) ∼ k−γ is associated with a
scale-free networks, where γ denotes the slope of a linear fit for
binned data in a log-log plot.
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Figure 2: Illustration of small structures of the network 9 / 31



Degree Distributions
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(a) Turkey γ ≈ 2.8
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Degree Distributions

(b) Germany γ ≈ 1.84
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(c) Netherlands γ ≈ 2.5
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Community Analysis
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Figure 3: The same projected graph as in Figure 8 from the network
graph shown in Figure 1.
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Community Analysis
Community size frequency

Louvain
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Types of Owners
This classification is retrieved from the BvD database

Owner Type ID Owner Type
1 Employees/Managers/Directors
2 Venture capital
3 Other unnamed shareholders aggregated
4 Financial company
5 One or more named individuals or families
6 Public (publicly listed companies)
7 Public authority State Government
8 Hedge funds
9 Insurance company
10 Self ownership
11 Private Equity firms
12 Industrial company
13 Mutual & Pension Fund/Nominee/Trust/Trustee
14 Bank
15 Foundation/Research Institute

14 / 31



Types of Owners

15 / 31



Family Owners in Turkey
Louvain

Occupation rate for one type of investor inside a community:
ri =

ni∑
j nj

, where ni is the number of type i investor and
∑

j nj

is the number of all types investors inside a community
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Families in Turkey
Infomap

If the structure of communities is established well enough, the
two should be able to give similar results, see [17]

Individuals or families
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Motivation for making models

Why model?
▶ Node label considered(heterogeneity of the networks)
▶ Mimic the dynamical process of the network(but with some

quantity conserved)
▶ To reproduce the small world effect, large clustering

coefficient and the emergence of a communities

Why random walk?
▶ Mimic local researching behaviour
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Random Walks
i Initialisation with a random directed graph D
ii Randomly pick up a node o and an edge (o, v);
iii Let a random walker start from the o walk to the next

neighbor vertex b
iv Reverse the graph and let random walker to continue walk

from b to a neighbour, p
v Reverse the graph again the let the random walker to

continue walk from p to a neighbour, c
vi Check the new edge(o, c) whether exists in the graph.

Delete the starting edge (o, v), only when edge(o, a) does
not exist in the graph. Thus the new directed edge (o, c) has
been created. If the edge already exists in the graph, make
node c as the starting node continue 3, Until a new edge is
found or exceed the maximum trial (100).

vii Go back to 4.
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Random Walks
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Figure 4: The illustration of
rewiring based on the random
walk on a directed network.
The directed edge (o, a) is
rewired to (o, c) based on the
random walk starting from o.
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Figure 5: The illustration of
the undirected networks
projected from the rewired
directed networks. After
rewiring, the edge undirected
edge (r, 0) is rewired to (o, q).
A triangle is created.
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Two Types of Investors
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Figure 6: Illustration for two types of vertex, type 1 prefer to
attaching to targets with lots of other predecessors; type 2 prefer to
attaching to targets with no more two predecessors
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Two Types of Investors
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Figure 7: Illustration of rewiring based on the random walk on a
directed network with labelled nodes.
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Simulation Results

Figure 8: The projected network with 200 nodes and 1315 edges.
Triangle stands Type 2 and circle stands for Type 1. Colours
represented different communities detected using infomap. 23 / 31



Community size distribution

Louvain

Infomap

Rewiring process with prw = 0.98 and Eth = 2. 3000 nodes and
8660 edges. The number of communities of louvain method is
931 compared with the number of Infomap is 961. And its
average clustering coefficient is 0.53.
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Average path length
(a.1) Random walk without labels (a.2) Random walk with labels
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(b.1) LCC of Turkey Shareholder Network (b.2) LCC of Netherlands Shareholder Network

0.0 2.5 5.0 7.5 10.0 12.5
Average Path Length

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 5 10 15 20
Average Path Length

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

25 / 31



Understanding the local structure
Observation: Triadic Closure for different type of nodes.
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Understanding the local structure
Motif transition
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Summary

Our model
▶ is able to explain the emergence of scaling modular

structures through random walks rewiring and many small
world properties, such as the average shortest.

▶ is different from the previous models since it generated
small components and isolated nodes, not just the
connected component.

▶ is qualitatively matched of the statistics, maybe to
extended by careful parameter estimation.
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Summary

Thank you for your attention!
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