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Problem
In mobile ad hoc wireless networks, connections between nodes are
established and broken intermittently due to node mobility and
variations in the propagation channel, leading to dynamically
changing network topology.

Questions
How “complex” is the network? How many bits are needed to encode
its random topology? What’s the impact of link dynamics on the
network’s performance?

Our Solution
Use graph theory and the information theoretic notion of entropy
rate to measure the topological uncertainty of the wireless
network and to quantify how quickly the underlying topology is
varying with time.
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Background: Rayleigh Fading

Rayleigh fading arises when the signal arriving at the receiver has
undergone multiple reflections with NO direct signal path between
receiver and transmitter.
The fading characteristics of the channel are determined by the
maximum Doppler frequency, νmax.

In a typical multipath propagation environment, the channel impulse
response is Gk ∼ CN

(
0, λ2

)
. The envelope of the channel response, |Gk |,

will therefore be Rayleigh distributed.
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Background: Signal to Noise Ratio (SNR)

In mobile ad hoc wireless networks, a transmission from node i to node j at
any time step k is successful (the link is active) if the SNR of the link,
Γi ,j
k , is greater than a certain threshold γth determined by the

communication hardware, and the modulation and coding scheme of the
wireless system.

If we assume a single input single output link with additive Gaussian noise,
then Γi ,j

k at any time step k is given by

Γi ,j
k = ψ

(
R i ,j
k

)−η
|G i ,j

k |
2,

where R i ,j
k is distance between nodes i and j at time step k , η is the path

loss exponent (typically η ≥ 2), and ψ is a constant depending on different
parameters such as transmit power, antenna properties, and wavelength.
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Part 1: Static Network subject to Rayleigh Fading

Random Geometric Graphs
We model the time-varying wireless network as a time-ordered
sequence of soft undirected random geometric graph (RGG).
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Application examples:
wireless networks
social networks
transportation networks

Properties of an ensemble:
connectedness
degree distribution
topological structure
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System Model

n wireless static nodes, located randomly in a space K ⊂ R2.
The locations of the nodes, Z = (Z i )i∈Vn , are iud in K.
Bounding geometries circle/square/triangle, and Rayleigh fading.
Li ,jk conditioned on the pair distance R i ,j = ‖Z i − Z j‖ is

Li ,jk |R
i ,j =

{
0, if 0 < Γi ,j

k < γth,

1, if γth ≤ Γi ,j
k <∞.

•
1

•3
•
2

•
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•5

r

p(r) = e−(r/r0)η

1

r0

η = 2

η = 10
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Two-State Markov Model for Connection Links

Conditioned on the pair distances, we model the evolution of each edge
(i , j) as a stationary Markov chain with on and off states.

P
(
Li ,jk = 1|R i ,j = r i ,j

)
= e−(r i,j/r0)η , r0 ∼ (1/γth)

1/η.

In a communication system with transmission rate of B [symbols/s]

P
(
Li ,jk = 1− a|Li ,jk−1 = a,R i ,j = r i ,j

)
≈ LCR(r i ,j)

P
(
Li ,jk−1 = a|R i ,j

)
× B

.
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Entropy Rate

The entropy rate of the stationary stochastic process Lk = (Li ,jk )i<j is
defined by

H (L) = lim
k→∞

1
k
H (L1, . . . ,Lk) .

It measures the average minimum description length of a stationary
stochastic process capturing the state of the dynamic system.

A high entropy rate indicates that the topology is frequently changing
over time, leading to an increase in overhead throughout the
network.

It can represent an accurate metric of link stability in dynamic
networks; it measures the uncertainty of the future state of the link
given its current state.
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Computational Issues

P (L1, . . . ,Lk) =

∫
R=[0,D]n(n−1)/2

P (L1, . . . ,Lk |R) fR(r)dr.

After averaging, the resulting stochastic process Lk inherits the
stationary property but not the Markov property.

Evaluation of the integral requires the joint probability distribution
function fR(r) of pair distances; expressions are not available for
n > 2 when nodes are confined inside a triangle/square. For n = 3
expressions are available if nodes are confined in a circle 1.

We resort to bounding the entropy rate of a random geometric graph.

1M.-A. Badiu, and J. P. Coon “On the Distribution of Random Geometric Graphs” in
IEEE International Symposium on Information Theory (ISIT), 2018.
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Bounds on the Entropy Rate

Upper Bound on the Entropy Rate

H (L1, . . . ,Lk) ≤
∑
i<j

[
(k − 1)H

(
Li ,j2 |L

i ,j
1

)
+ H

(
Li ,j1

)]
.

Lower Bound on the Entropy Rate

H (L1,L2, . . . ,Lt) ≥
∑
i<j

[
(t − 1)H

(
Li ,j2 |L

i ,j
1 ,R

i ,j
)

+ H
(
Li ,j1 |R

i ,j
)]
.

(
n

2

)
H
(
L1,22 |L

1,2
1 ,R1,2

)
≤ H(L) ≤

(
n

2

)
H
(
L1,22 |L

1,2
1

)
.
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Numerical Results

We consider a communication system using 802.11a/g protocols with
symbol rate B = 12 MBd.
Evaluate the entropy rate of a fifty-node RGG; bounding geometries:
square of unit side length, circle of radius 1/

√
π, and equilateral triangle

of side length 2/ 4√3; maximum Doppler frequency νmax = 500 Hz.
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Part 2: Mobile Network with no Rayleigh Fading

Mobility Model
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System Model

Consider 2 arbitrary nodes (mobile wireless devices) moving
randomly over a two-dimensional plane.

The locations of the nodes at time t ≥ 0 are given by
(
X 1
t ,Y

1
t

)
and(

X 2
t ,Y

2
t

)
.

The separation distance between nodes at time t is

Rt =

√(
X 2
t − X 1

t

)2
+
(
Y 2
t − Y 1

t

)2
.

We assume there is no fading affecting the link between nodes, i.e.,
|Gt |2 = 1. Then, Γt at any time t is given by

Γt = ψR−ηt .
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Markov Model of Link Process

Instead of observing the locations of the mobile nodes continuously, we
monitor them at regular time steps k = t0 + k∆t, k ∈ N and ∆t > 0.

The random variable Lk denotes the link state between nodes at any time
step k , where 1(0) defines whether the link exists (does not exist)

Lk =

{
1, if Rk ≤ r0,

0, otherwise,

where r0 = (ψ/γth)
1
η is the typical connection range.

To assess the validity of the first-order Markov assumption we evaluate a
mutual-information-based metric as a function of the sampling interval ∆t

RMI =
I (Lk ; Lk−2|Lk−1)

I (Lk ; Lk−1, Lk−2)
.
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Numerical evaluation for the mutual information ratio RMI versus the
sampling interval ∆t; mobility parameters: τ = 1s,

√
D = 100m/

√
s,

β = 10m, and connection range r0 = 50m.

Arta Cika (University of Oxford) Quantifying Link Stability in Mobile Ad Hoc Wireless Networks Using a Hidden Markov Model17 / 27



Entropy Rate as a Link Stability Metric

The link state evolution {Lk , k ∈ N} is modeled as a stationary Markov
chain, and its entropy rate is equal to the transition entropy

H (L2|L1) = −
∑

b∈{0,1}

P (L1 = b)

×
∑

a∈{0,1}

P (L2 = a|L1 = b) log2 P (L2 = a|L1 = b) .

P (L2 = a|L1 = b) = ∫
r3∈R+

∫
r2∈Ia

∫
r1∈Ib fR1,R2,R3 (r1, r2, r3) dr1dr2dr3∫

r∈Ib fR(r)dr
.

where the state variables a, b ∈ {0, 1} determine the integration intervals
Ia and Ib, respectively.
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Numerical Results (I)

Numerical evaluation for the entropy rate H (L2|L1) versus the sampling
interval ∆t; mobility parameters: τ = 1s, β = 10m, r0 = 50m.
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Numerical Results (II)

Numerical evaluation for the entropy rate H (L2|L1) versus the diffusion
coefficient

√
D; mobility parameters: τ = 1s, ∆t = 1s, and β = 10m.
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Part 3: Mobile Network subject to Rayleigh Fading

Markov Model of Distance Process
The squared separation distance between nodes 1 and 2 at any time t is
given by

Pt =
(
X 2
t − X 1

t

)2
+
(
Y 2
t − Y 1

t

)2
.

The Stochastic Differential Equation of Pt is given by

dPt =

(
4D − 2

τ
Pt

)
dt + 2

√
2D
√

PtdWt , P0 = p0.

The square distance process (Pt , t ≥ 0) is a stationary ergodic Bessel
process.
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Markov Model of Distance Process

The probability density of the squared distance at time t, conditioned
on its value at the current time s, is

fPt |Ps
(pt |ps) = χ2 [2ptc ; 2, 2psu] ,

with 2 degrees of freedom and parameter of non-centrality 2psu, where

c = 1
2Dτ(1−exp[−k(t−s)]) , and u = c exp [−k(t − s)].

The steady state density function is

fP (p) =
1

2Dτ
exp

[
− p

2Dτ

]
.
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Hidden Markov Model of Link Process (I)

Time Discretization
Instead of observing the locations of the mobile nodes continuously, we
monitor them at regular time steps k = t0 + k∆t, k ∈ N and ∆t > 0.

The normalized autocovariance function of the squared envelope
{|Gt |2, t ≥ 0} is

E
{
|Gt |2|Gt+∆t |2

}
− E2

{
|Gt |2

}
E2 {|Gt |2}

= J20 (2πνmax∆t) ,

In order to guarantee independence between two consecutive channel
gain samples, ∆t must satisfy the following condition

∆t ≥ 0.18
νmax

.
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Hidden Markov Model of Link Process (II)

The SNR at any time step k is Γk = ψP
−η/2
k |Gk |2.

The channel gain is exponentially distributed with mean λ2, i.e.
|Gk |2 ∼ Exp

(
λ2
)
for any time step k . Then, the observation

conditional density is

fΓk |Pk
(γk |pk) =

p
η/2
k

ψλ2
exp

[
−γk

p
η/2
k

ψλ2

]
.
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Hidden Markov Model of Link Process (III)

Lt denotes the link state between nodes at any time t

P (Lk = 1|Γk = γk) =

{
0, if 0 < γk < γth,

1, if γth ≤ γk <∞.
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Conclusions & Future Work

The evolution of the link between any two nodes is modeled as a Hidden
Markov Process, which can effectively predict the presence (or absence)
of a connection according to its SNR.

This model can be used to formulate a stability metric using the
entropy rate, taking full advantage of the correlation between the link
current and future state.

Extension to n > 2 nodes.

Design link state prediction-based routing algorithms using the
hidden Markov model and the entropy rate as stability metric to
choose the most stable route between nodes.
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Measuring Complexity through Encoding

The Kolmolgorov complexity of an object is defined as the smallest
possible description of that object using a fixed, universal description
language.

Minimum Description Length (MDL) is the principle that the best
encoding of a dataset is the one that compresses it the most.

Complexity → MDL → Entropy



Level Crossing Rate
It quantifies how often the signal level crosses the threshold γth, usually in
the positive-going direction, and is defined as

LCR (γth) =
√
2π
(
γth
γ0

)1/2

νi ,j e−γth/γ0 . (1)

Expressing the level crossing rate as a function of pair distance Ri ,j , we
obtain

LCR (ri ,j) =
√
2π
(
ri ,j
r0

)η/2
νi ,j e−(ri,j/r0)η . (2)



Upper Bound on Entropy Rate

We derive an upper bound on the entropy rate

H
(
X1, . . . ,Xt

)
≤
∑
i<j

[
(t − 1)H

(
X 2
i ,j |X 1

i ,j

)
+ H

(
X 1
i ,j

)]
(3)

Dividing by t and taking the limit t →∞, we arrive at the entropy
rate relation

H (X ) ≤
∑
i<j

H
(
X 2
i ,j |X 1

i ,j

)
(4)

where

H
(
X 2
i ,j |X 1

i ,j

)
= −

∑
a∈{0,1}

P
(
X 1
i ,j = a

)
×

∑
b∈{0,1}

P
(
X 2
i ,j = b|X 1

i ,j = a
)

logP
(
X 2
i ,j = b|X 1

i ,j = a
)

(5)



Lower Bound on Entropy Rate

H
(
X 2
1,2|X 1

1,2,R1,2
)

= −
∫ D

0
fR(r1,2)dr1,2

×
∑

a∈{0,1}

P
(
X 1
1,2 = a|R1,2 = r1,2

)
×

∑
b∈{0,1}

[
P
(
X 2
1,2 = b|X 1

1,2 = a,R1,2 = r1,2
)

× logP
(
X 2
1,2 = b|X 1

1,2 = a,R1,2 = r1,2
)]
.



Bounds on the Entropy Rate
P (Xi ,j = a) is the probability that edge (i , j) exists (a = 1) or not
(a = 0), averaged over the pair distance Ri ,j

P
(
X 1
i ,j = a

)
=

∫ D

0
P
(
X 1
i ,j = a|Ri ,j = ri ,j

)
fRi,j

(ri ,j) dri ,j

In the same fashion

P
(
X 2
i ,j = b|X 1

i ,j = a
)

=

∫ D

0
P
(
X 2
i ,j = b|X 1

i ,j = a,Ri ,j = ri ,j
)
fRi,j

(ri ,j) dri ,j ,

for each a, b ∈ {0, 1}.



Instantaneous Signal-to-Noise-Ratio (SNR)
γti ,j is the received SNR, and has an exponential distribution with
probability density function

f (γi ,j) =
1
γ0

e−γi,j/γ0 , γi ,j ≥ 0 (6)



Distance Distribution
We can write the separation distance between nodes at time t as

Rt =

√(
X j
t − X i

t

)2
+
(
Y j
t − Y i

t

)2
, (7)

where X j
t − X i

t ∼ N (β,Dτ (1− exp [−2t/τ ])) and
Y j
t − Y i

t ∼ N (0,Dτ (1− exp [−2t/τ ])) are independent random variables.

By a simple transformation of random variables, it is easy to show that
Rt ∼ Rice

(
β,
√
gt
)
for all t, and its probability density function is given by

fR(r ; t) =
r

gt
exp

[
−
(
r2 + β2

)
2gt

]
I0
(
βr

gt

)
, (8)

with gt = Dτ (1− exp [−2t/τ ]) and I0 being the modified Bessel function
of the first kind with order zero.



The trivariate distribution of the Rician random variables R1, R2, and
R3

fR1,R2,R3 (r1, r2, r3) =

r1r2r3
|˚|

exp

{
−1
2

(
3∑

i=1

wii r
2
i + β2w4

)}

×
∞∑
q=0

∞∑
p=−∞

εk (−1)q+p Iq(w3βr3)Iq(w32βr2r3) (9)

× Ip(w1βr1)Ip(w12r1r2)Iq+p(w2βr2),

where w1 = w11 + w12, w2 = w22 + w23 + w12, w3 = w33 + w23,
w4 = w1 + w2 + w3, In is the modified Bessel function of the first kind and
order n, |˚| is the determinant of the covariance matrix, and εk is the
Neumann factor (ε0 = 1, εn = 2 for n = 1, 2, . . . ) .
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