Predicting Switching Graph Labelings with Cluster Specialists

MoN18: Eighteenth Mathematics of Networks Meeting

James Robinson (joint work with Mark Herbster)

8 April 2019

Department of Computer Science University College London

Outline

Introduction

Predicting Switching Graph Labelings

Cluster Specialists

Experiments

Conclusion

Introduction

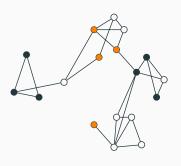
Introduction

- Graph prediction is a foundational problem in machine learning
- Many flavours/settings (node classification, edge classification, clustering)
- Today: Node classification in the *online learning* setting (sequential prediction)
- Want to develop algorithms with performance guarantees

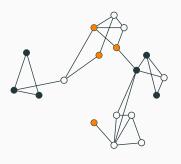
Predicting Switching Graph

Labelings

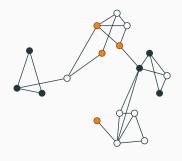
• *n*-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$



- *n*-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- A labeling is a function $u: V \mapsto \{-1, 1\}$



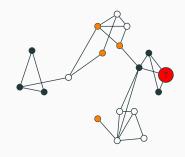
- n-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- A labeling is a function $u: V \mapsto \{-1, 1\}$
- Online learning protocol:For t = 1,..., T do:



- *n*-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- A labeling is a function $u: V \mapsto \{-1, 1\}$
- Online learning protocol:

For
$$t = 1, ..., T$$
 do:

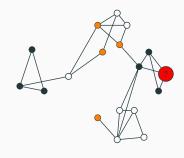
1. Nature selects a vertex $i_t \in V$



- n-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- A labeling is a function $u: V \mapsto \{-1, 1\}$
- Online learning protocol:

For
$$t = 1, ..., T$$
 do:

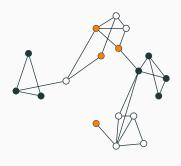
- 1. Nature selects a vertex $i_t \in V$
- 2. Learner predicts $\hat{y}_t \in \{-1, 1\}$



- n-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- A labeling is a function $u: V \mapsto \{-1, 1\}$
- Online learning protocol:

For
$$t = 1, \ldots, T$$
 do:

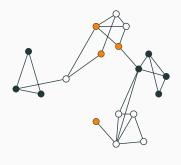
- 1. Nature selects a vertex $i_t \in V$
- 2. Learner predicts $\hat{y}_t \in \{-1, 1\}$
- 3. Nature reveals label $u_t(i_t) \in \{-1,1\}$



- n-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- A labeling is a function $u: V \mapsto \{-1, 1\}$
- Online learning protocol:

For
$$t = 1, \ldots, T$$
 do:

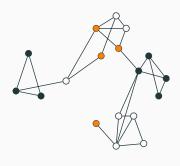
- 1. Nature selects a vertex $i_t \in V$
- 2. Learner predicts $\hat{y}_t \in \{-1, 1\}$
- 3. Nature reveals label $u_t(i_t) \in \{-1, 1\}$
- 4. Learner incurs loss $m_t = [\mathbf{u}_t(i_t) \neq \hat{y}_t]$



- *n*-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- ullet A labeling is a function $oldsymbol{u}:V\mapsto\{-1,1\}$
- Online learning protocol:

For
$$t = 1, ..., T$$
 do:

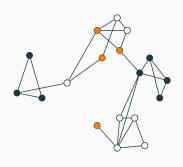
- 1. Nature selects a vertex $i_t \in V$
- 2. Learner predicts $\hat{y}_t \in \{-1, 1\}$
- 3. Nature reveals label $u_t(i_t) \in \{-1, 1\}$
- 4. Learner incurs loss $m_t = [\mathbf{u}_t(i_t) \neq \hat{y}_t]$
- No statistical assumptions are made!
 Nature could be adversarial



- n-vertex Graph $\mathcal{G} = (V, E)$, $V = \{1, \dots, n\}$
- A labeling is a function $u: V \mapsto \{-1, 1\}$
- Online learning protocol:

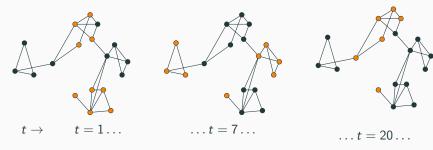
For
$$t = 1, \ldots, T$$
 do:

- 1. Nature selects a vertex $i_t \in V$
- 2. Learner predicts $\hat{y}_t \in \{-1, 1\}$
- 3. Nature reveals label $u_t(i_t) \in \{-1, 1\}$
- 4. Learner incurs loss $m_t = [\mathbf{u}_t(i_t) \neq \hat{y}_t]$
- No statistical assumptions are made!
 Nature could be adversarial
- Performance guarantees hold in the worst case



Switching Graph Labelings

Sequence of labelings $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_T$ s.t. $|\{t : \mathbf{u}_t \neq \mathbf{u}_{t+1}\}| = K$



The learner doesn't know when switches occur

Assume K is 'small'

Objectives

• Minimize the number of mistakes

$$M = \sum_{t=1}^{T} m_t = \sum_{t=1}^{T} [u_t(i_t) \neq \hat{y}_t]$$

Objectives

• Minimize the number of mistakes

$$M = \sum_{t=1}^{T} m_t = \sum_{t=1}^{T} [u_t(i_t) \neq \hat{y}_t]$$

• Provide good mistake bound guarantees for switching:

$$M \leq f$$
 (complexity($\mathbf{u}_1, \dots, \mathbf{u}_T$), K , structure(\mathcal{G}))

Objectives

• Minimize the number of mistakes

$$M = \sum_{t=1}^{T} m_t = \sum_{t=1}^{T} [\mathbf{u}_t(i_t) \neq \hat{y}_t]$$

• Provide good mistake bound guarantees for switching:

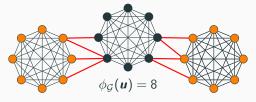
$$M \leq f$$
 (complexity($\mathbf{u}_1, \dots, \mathbf{u}_T$), K , structure(\mathcal{G}))

Algorithms should be fast (online predictions)

complexity $(\mathbf{u}_1, \dots, \mathbf{u}_T)$ - Cut-size ϕ

We assume that a graph $\mathcal G$ consists of tightly-connected clusters, with loose inter-cluster connections. Nodes in a cluster (mostly) share the same label.

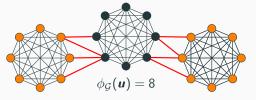
A labeling $\pmb{u}: V \mapsto \{-1,1\}$ induces a $cut \ \phi_{\mathcal{G}}(\pmb{u}) = \sum\limits_{(i,j) \in \mathcal{E}} [\pmb{u}(i) \neq \pmb{u}(j)]$



complexity (u_1, \ldots, u_T) - Cut-size ϕ

We assume that a graph $\mathcal G$ consists of tightly-connected clusters, with loose inter-cluster connections. Nodes in a cluster (mostly) share the same label.

A labeling
$$\pmb{u}: V \mapsto \{-1,1\}$$
 induces a $cut \ \phi_{\mathcal{G}}(\pmb{u}) = \sum\limits_{(i,j) \in \mathcal{E}} [\pmb{u}(i)
eq \pmb{u}(j)]$



Static mistake bounds typically scale *linearly* with $\phi_{\mathcal{G}}(\mathbf{u})$ - sensitive!

• [HLP08] -
$$\mathcal{O}\left(\phi_{\mathcal{G}}(\mathbf{\textit{u}})\log\frac{\textit{n}}{\phi_{\mathcal{G}}(\mathbf{\textit{u}})} + \phi_{\mathcal{G}}(\mathbf{\textit{u}})\right)$$

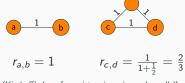
• [HP06] -
$$\mathcal{O}(\phi_{\mathcal{G}}(\mathbf{u})R_{\mathcal{G}})$$
, $R_{\mathcal{G}} = f(structure(\mathcal{G}))$

$\overline{complexity(u_1,\ldots,u_T)}$ - Effective Resistance $r_{i,j}$

Define $r_{i,j}$ to be the *effective resistance* between nodes i and j when G is a network of *unit* resistors (edges)

$complexity(u_1, \ldots, u_T)$ - Effective Resistance $r_{i,j}$

Define $r_{i,j}$ to be the *effective resistance* between nodes i and j when G is a network of *unit* resistors (edges)

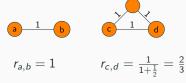


(Kirchoff's laws for resistors in series and parallel)

 $r_{i,j}$ is a measure of connectivity - effective resistance between two nodes decreases with increased connectivity

$\overline{\mathit{complexity}(u_1,\ldots,u_T)}$ - Effective Resistance $r_{i,j}$

Define $r_{i,j}$ to be the *effective resistance* between nodes i and j when \mathcal{G} is a network of *unit* resistors (edges)



(Kirchoff's laws for resistors in series and parallel)

 $r_{i,j}$ is a measure of connectivity - effective resistance between two nodes *decreases* with increased connectivity

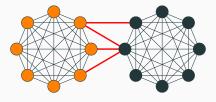
Definition

Define the resistance-weighted cut-size to be:

$$\phi^{r}(\boldsymbol{u}) = \sum_{(i,j)\in E} r_{i,j} \left[\boldsymbol{u}(i) \neq \boldsymbol{u}(j) \right]$$

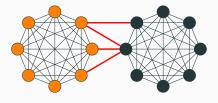
8

$complexity(\pmb{u}_1,\ldots,\pmb{u}_T)$ - Resistance-weighted cut-size ϕ^r



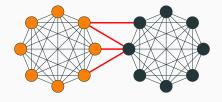
• Two *m*-cliques with $\ell < m$ edges between them

$complexity(u_1,\ldots,u_T)$ - Resistance-weighted cut-size ϕ^r



- Two *m*-cliques with $\ell < m$ edges between them
- For all vertices $i, j \in V$, we have $r_{i,j} \leq \Theta(\frac{1}{\ell})$

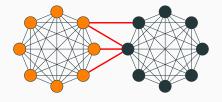
$complexity(\pmb{u}_1,\ldots,\pmb{u}_T)$ - Resistance-weighted cut-size ϕ^r



- Two *m*-cliques with $\ell < m$ edges between them
- For all vertices $i, j \in V$, we have $r_{i,j} \leq \Theta(\frac{1}{\ell})$
- Hence,

$$\phi(\mathbf{u}) = \sum_{(i,j)\in E} [\mathbf{u}(i) \neq \mathbf{u}(j)] = \ell$$
$$\phi^{r}(\mathbf{u}) = \sum_{(i,j)\in E} r_{i,j} [\mathbf{u}(i) \neq \mathbf{u}(j)] \leq \Theta(1)$$

$complexity(\pmb{u}_1,\ldots,\pmb{u}_T)$ - Resistance-weighted cut-size ϕ^r



- Two *m*-cliques with $\ell < m$ edges between them
- For all vertices $i, j \in V$, we have $r_{i,j} \leq \Theta(\frac{1}{\ell})$
- Hence,

$$\phi(\mathbf{u}) = \sum_{(i,j)\in E} [\mathbf{u}(i) \neq \mathbf{u}(j)] = \ell$$
$$\phi^{r}(\mathbf{u}) = \sum_{(i,j)\in E} r_{i,j} [\mathbf{u}(i) \neq \mathbf{u}(j)] \leq \Theta(1)$$

• $\phi^r(\mathbf{u})$ is robust!

Random Spanning Tree - Resistance weighted cut-size

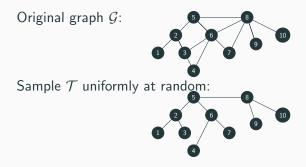
How to exploit $\phi^r(u)$?

Expected cut-size of a random spanning tree **generated uniformly at random** ([CBGV09]):

$$\mathbb{E}\left[\phi_{\mathcal{T}}\left(u\right)\right] = \sum_{(i,j)\in\mathcal{E}} \mathbb{P}\left(\left(i,j\right)\in\mathcal{E}_{\mathcal{T}}\right)\left[u(i)\neq u(j)\right]$$
$$= \sum_{(i,j)\in\mathcal{E}} r_{i,j}\left[u(i)\neq u(j)\right]$$
$$= \phi'(u)$$

Mistake bounds in terms of $\phi(\mathbf{u})$ become expected mistake bounds in terms of $\phi^r(\mathbf{u})!$

Original graph G:



Original graph G:

Sample \mathcal{T} uniformly at random:

Compute *spine* S from T (depth-first search):

Original graph G:

Sample \mathcal{T} uniformly at random:

Compute *spine* S from T (depth-first search):

Original graph G:

Sample \mathcal{T} uniformly at random:

Compute *spine* S from T (depth-first search):

Satisfies:

$$\phi_{\mathcal{S}}(\mathbf{u}) \leq 2\phi_{\mathcal{T}}(\mathbf{u}) \leq 2\phi_{\mathcal{G}}(\mathbf{u})$$

Original graph G:

Sample \mathcal{T} uniformly at random:

Compute *spine* S from T (depth-first search):

Properties: ([HLP08])

$$\phi_{\mathcal{S}}(\mathbf{u}) \leq 2\phi_{\mathcal{T}}(\mathbf{u}) \leq 2\phi_{\mathcal{G}}(\mathbf{u})$$

$$\mathbb{E}\left[\phi_{\mathcal{S}}(\boldsymbol{u})\right] \leq 2\mathbb{E}\left[\phi_{\mathcal{T}}(\boldsymbol{u})\right] = 2\phi^{r}(\boldsymbol{u})$$

Cluster Specialists

Cluster Specialists

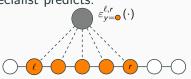
• A specialist is a basis function $\varepsilon:V \to \{-1,1,\square\}$

- A specialist is a *basis function* $\varepsilon: V \to \{-1, 1, \square\}$
- \bullet " \square " on some inputs a specialist can offer no prediction

- A specialist is a *basis function* $\varepsilon: V \to \{-1, 1, \square\}$
- "□" on some inputs a specialist can offer no prediction
- Given S denote the vertices $\{1, \ldots, n\}$ in linear order

• For a vertex $v \in V$ a cluster specialist predicts:

$$\varepsilon_y^{\ell,r}(v) := \begin{cases} y & \ell \le v \le r \\ \Box & \text{otherwise} \end{cases}$$



- A specialist is a *basis function* $\varepsilon: V \to \{-1, 1, \square\}$
- "□" on some inputs a specialist can offer no prediction
- ullet Given ${\mathcal S}$ denote the vertices $\{1,\ldots,n\}$ in linear order

• For a vertex $v \in V$ a cluster specialist predicts:

$$arepsilon_y^{\ell,r}(v) := egin{cases} y & \ell \leq v \leq r \ \Box & ext{otherwise} \end{cases}$$

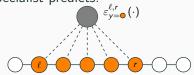


How to construct a specialist set?

- A specialist is a *basis function* $\varepsilon: V \to \{-1, 1, \square\}$
- "□" on some inputs a specialist can offer no prediction
- Given S denote the vertices $\{1, \ldots, n\}$ in linear order

• For a vertex $v \in V$ a cluster specialist predicts:

$$arepsilon_y^{\ell,r}(v) := egin{cases} y & \ell \leq v \leq r \ \Box & ext{otherwise} \end{cases}$$

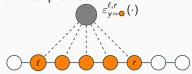


- How to construct a specialist set?
 - ullet Needs to be *complete* (any labeling $oldsymbol{u} \in \{-1,1\}^{|V|}$ is *covered*)

- A specialist is a *basis function* $\varepsilon: V \to \{-1, 1, \square\}$
- "□" on some inputs a specialist can offer no prediction
- Given S denote the vertices $\{1, \ldots, n\}$ in linear order

• For a vertex $v \in V$ a cluster specialist predicts:

$$arepsilon_y^{\ell,r}(v) := egin{cases} y & \ell \leq v \leq r \ \Box & ext{otherwise} \end{cases}$$

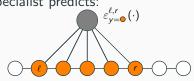


- How to construct a specialist set?
 - ullet Needs to be *complete* (any labeling $oldsymbol{u} \in \{-1,1\}^{|V|}$ is *covered*)
 - The 'covering set' of a labeling should **not** be too large

- A specialist is a *basis function* $\varepsilon: V \to \{-1, 1, \square\}$
- "□" on some inputs a specialist can offer no prediction
- Given $\mathcal S$ denote the vertices $\{1,\ldots,n\}$ in linear order

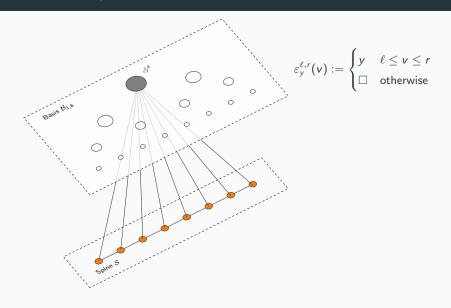
• For a vertex $v \in V$ a cluster specialist predicts:

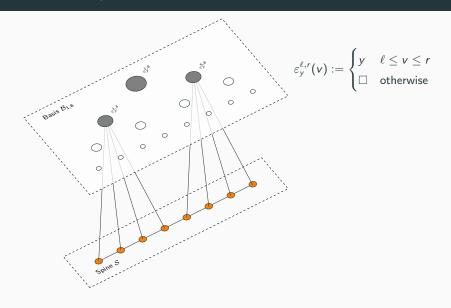
$$arepsilon_y^{\ell,r}(v) := egin{cases} y & \ell \leq v \leq r \\ \Box & ext{otherwise} \end{cases}$$

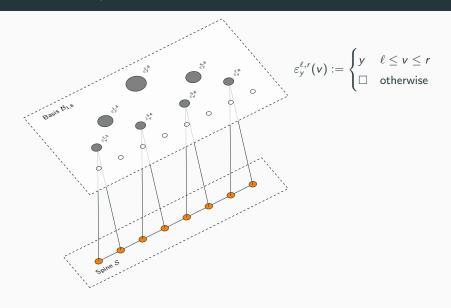


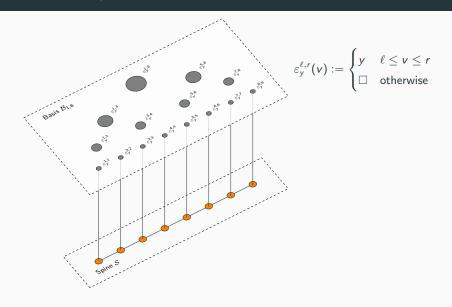
• Two specialist sets:

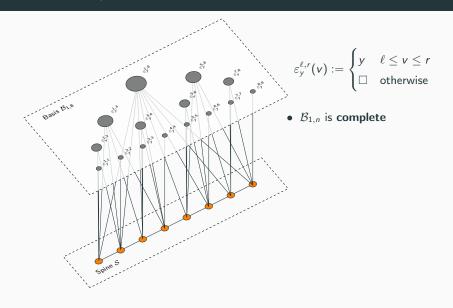
$$\mathcal{F}_{n} := \{ \varepsilon_{y}^{\ell,r} : \ell, r \in [n], \ell \leq r; y \in \{-1,1\} \}, \qquad |\mathcal{F}_{n}| = \mathcal{O}(n^{2})
\mathcal{B}_{m,n} := \begin{cases} \{ \varepsilon_{-1}^{m,n}, \varepsilon_{1}^{m,n} \} & m = n \\ \{ \varepsilon_{-1}^{m,n}, \varepsilon_{1}^{m,n} \} \cup \mathcal{B}_{m, \lfloor \frac{m+n}{2} \rfloor} \cup \mathcal{B}_{\lceil \frac{m+n}{2} \rceil, n} & m \neq n \end{cases}, \qquad |\mathcal{B}_{1,n}| = \mathcal{O}(n)$$



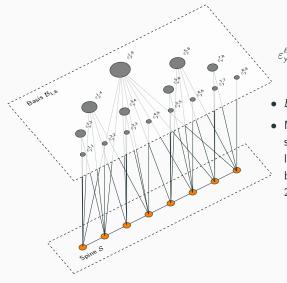






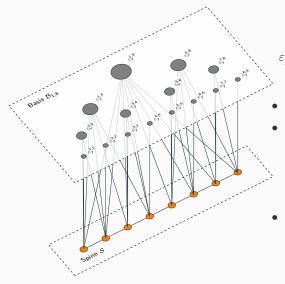


Basis Set $\overline{\mathcal{B}_{1,n}}$



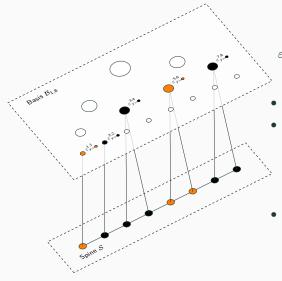
$$\varepsilon_y^{\ell,r}(v) := \begin{cases} y & \ell \le v \le r \\ \Box & \text{otherwise} \end{cases}$$

- $\mathcal{B}_{1,n}$ is complete
- Maximum number of specialists required to *cover* a labeling $\boldsymbol{u} \in \{-1,1\}^{|V|}$ is bounded above by $2(\phi_{\mathcal{S}}(\boldsymbol{u})+1)\lceil\log_2\frac{n}{2}\rceil$



$$\varepsilon_y^{\ell,r}(v) := \begin{cases} y & \ell \le v \le r \\ \Box & \text{otherwise} \end{cases}$$

- $\mathcal{B}_{1,n}$ is complete
- Maximum number of specialists required to *cover* a labeling $\boldsymbol{u} \in \{-1,1\}^{|V|}$ is bounded above by $2(\phi_{\mathcal{S}}(\boldsymbol{u})+1)\lceil\log_2\frac{n}{2}\rceil$
- Only $\Theta(\log n)$ specialists are 'active' at any given time $(\mathcal{O}(n^2)$ for basis set $\mathcal{F}_n)$

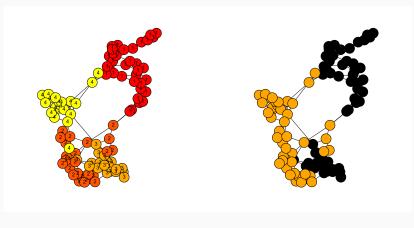


$$\varepsilon_y^{\ell,r}(v) := \begin{cases} y & \ell \le v \le r \\ \Box & \text{otherwise} \end{cases}$$

- $\mathcal{B}_{1,n}$ is complete
- Maximum number of specialists required to *cover* a labeling $\boldsymbol{u} \in \{-1,1\}^{|V|}$ is bounded above by $2(\phi_S(\boldsymbol{u})+1)\lceil\log_2\frac{n}{2}\rceil$
- Only $\Theta(\log n)$ specialists are 'active' at any given time $(\mathcal{O}(n^2)$ for basis set $\mathcal{F}_n)$

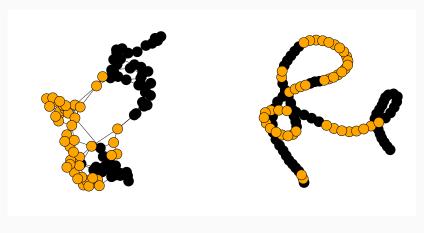
Image Source: [YHW18]

- USPS Dataset (hand-written digits)
- 16×16 pixels \rightarrow points in \mathbb{R}^{256}
- Build graph by connecting each point with its 3 nearest neighbors



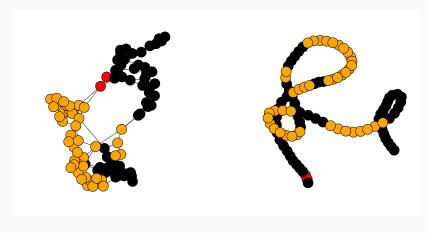
Original Graph ${\mathcal G}$

Simulated binary labeling



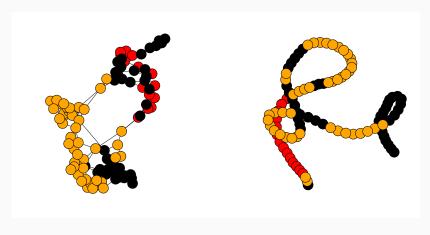
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



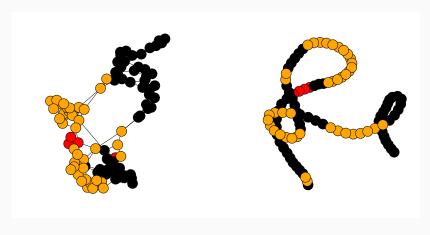
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



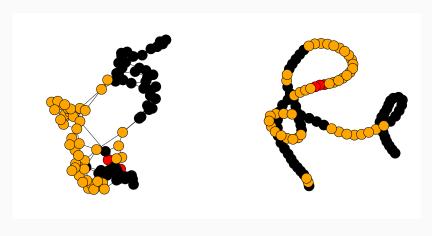
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



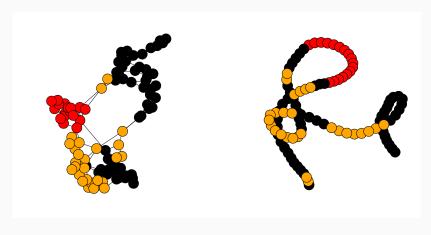
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



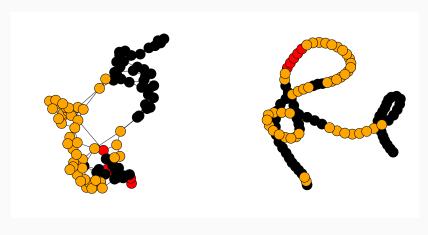
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



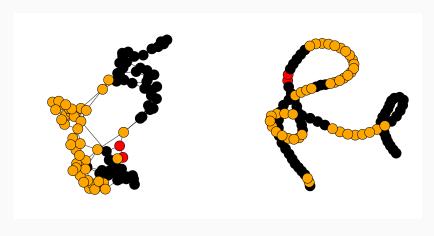
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



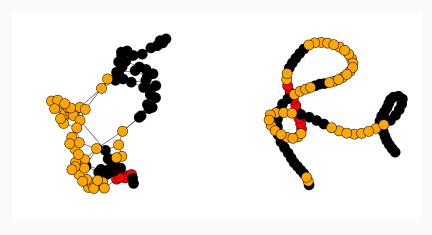
Original Graph ${\cal G}$

Linear Embedding (Spine) ${\cal S}$



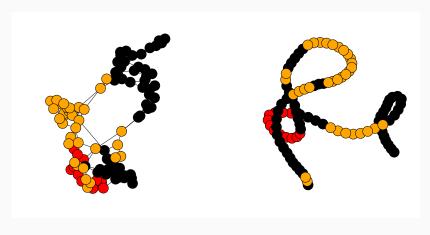
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



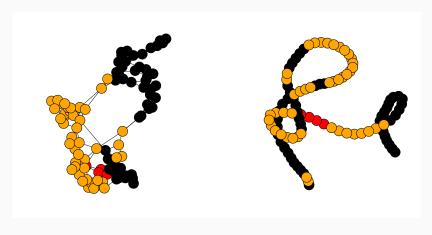
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



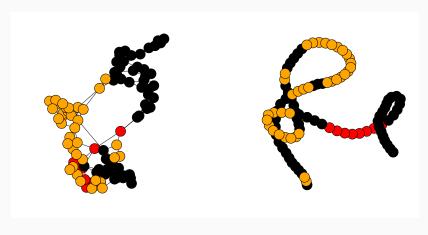
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



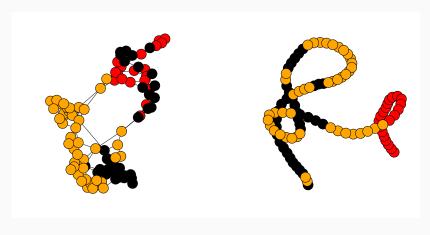
Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$



Original Graph ${\mathcal G}$

Linear Embedding (Spine) ${\cal S}$

Algorithm

```
Algorithm 1: SWITCHING CLUSTER SPECIALISTS
                           : Specialists set E
input
parameter : \alpha \in [0, 1]
initialize : \omega_1 \leftarrow \frac{1}{|\mathcal{E}|} \mathbf{1}, \dot{\omega}_0 \leftarrow \frac{1}{|\mathcal{E}|} \mathbf{1}, \boldsymbol{p} \leftarrow \boldsymbol{0}, m \leftarrow 0
for t = 1 to T do
         receive i_t \in V
         set A_t := \{ \varepsilon \in \mathcal{E} : \varepsilon(i_t) \neq \square \}
         foreach \varepsilon \in A_t do
                                                                                                                                                                       // delayed share update
          \omega_{t,\varepsilon} \leftarrow (1-\alpha)^{m-p_{\varepsilon}} \dot{\omega}_{t-1,\varepsilon} + \frac{1-(1-\alpha)^{m-p_{\varepsilon}}}{|\mathcal{E}|}
         predict \hat{y}_t \leftarrow \operatorname{sign}(\sum_{\varepsilon \in A_t} \omega_{t,\varepsilon} \, \varepsilon(i_t))
         receive y_t \in \{-1, 1\}
         set Y_t := \{ \varepsilon \in \mathcal{E} : \varepsilon(i_t) = y_t \}
         if \hat{y}_t \neq y_t then
                                                                                                                                                                                                    // loss update
                   \dot{\omega}_{t,\varepsilon} \leftarrow \begin{cases} 0 & \varepsilon \in \mathcal{A}_t \cap \bar{\mathcal{Y}}_t \\ \dot{\omega}_{t-1,\varepsilon} & \varepsilon \notin \mathcal{A}_t \\ \omega_{t,\varepsilon} \frac{\omega_t(\mathcal{A}_t)}{\varepsilon(\mathcal{Y})} & \varepsilon \in \mathcal{Y}_t \end{cases}
                                                                                                                                                                                                                                              (2)
                  foreach \varepsilon \in A_t do
                   p_{\varepsilon} \leftarrow m
                   m \leftarrow m + 1
          else
           \dot{\omega}_t \leftarrow \dot{\omega}_{t-1}
```

Algorithm Intuition

- ullet Weight vector $oldsymbol{\omega}_t \in [0,1]^{|\mathcal{E}|}$ maintained
- ullet Weight $\omega_{t,arepsilon}$ corresponds to our 'confidence' in specialist arepsilon
- On each trial set "active" specialists $\mathcal{A}_t := \{ \varepsilon \in \mathcal{E} : \varepsilon(i_t) \neq \square \}$
- ullet Take the weighted-majority vote of specialists in \mathcal{A}_t
- Decrease weight of incorrect specialists
- Increase weight of correct specialists
- Share some of the weight among all specialists after each update (can be done efficiently)

Mistake Bound Guarantees

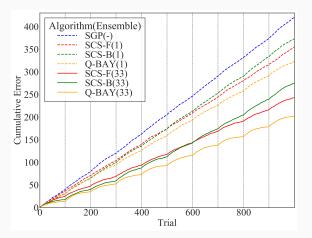
For a sequence of K distinct labelings u^1, \ldots, u^K , let

$$\begin{aligned} H_k := & \sum_{(i,j) \in E_{\mathcal{S}}} \left[\ \left[\left[\mathbf{u}^k(i) \neq \mathbf{u}^k(j) \right] \vee \left[\mathbf{u}^{k+1}(i) \neq \mathbf{u}^{k+1}(j) \right] \right] \wedge \\ & \left[\left[\mathbf{u}^k(i) \neq \mathbf{u}^{k+1}(i) \right] \vee \left[\mathbf{u}^k(j) \neq \mathbf{u}^{k+1}(j) \right] \ \right] \end{aligned}$$

	Static Bounds
[HLP08]	$\mathcal{O}\left(\phi_{\mathcal{G}}\left(\mathbf{u}\right)\log\frac{n}{\phi_{\mathcal{G}}\left(\mathbf{u}\right)}+\phi_{\mathcal{G}}\left(\mathbf{u}\right)\right)$
[HP06]	$\mathcal{O}\left(\phi_{\mathcal{G}}\left(\mathbf{u}\right)R_{\mathcal{G}}\right)$
	Switching Mistake Bounds
\mathcal{F}_{n}	k=1
$\mathcal{B}_{1,n}$	$\mathcal{O}\left(\left(\phi_{\mathcal{G}}\left(u_{1}\right)\log n+\sum\limits_{k=1}^{K-1}H_{k}\left(\log n+\log K+\log\log T\right)\right)\log n\right)$
	Time Complexity (per trial)
\mathcal{F}_n	$\mathcal{O}(n^2)$
$\mathcal{B}_{1,n}$	$\mathcal{O}(\log n)$

Experiments

Experiments



Mean cumulative error over 12 iterations of 10 switches every 100 trials on an 4096-vertex graph. Solid lines SCS-F and SCS-B show the mean cumulative error of an ensemble size of 33, dashed lines show the average cumulative error of a single instance (ensemble size 1).

Conclusion

Conclusion

- Solved the problem of efficient online prediction of switching graph labelings
- Described the machinery of Cluster Specialists
- Proved smooth mistake bounds
- Exponential speed up with $\mathcal{B}_{1,n}$
- Future work:
 - New methods of constructing specialist sets (e.g., hierarchical clustering)
 - Further experiments

Thank you!

(Thank you to Fabio Vitale for some slides)

References

N. Cesa-Bianchi, C. Gentile, and F. Vitale, Fast and optimal prediction on a labeled tree, Proceedings of the 22nd Annual Conference on Learning Theory, Omnipress, 2009, pp. 145–156.

M. Herbster, G. Lever, and M. Pontil, *Online prediction on large diameter graphs*, Proceedings of the 21st International Conference on Neural Information Processing Systems, NIPS '08, 2008, pp. 649–656.

M. Herbster and M. Pontil, *Prediction on a graph with a perceptron*, Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS'06, 2006, pp. 577–584.

Y. Yang, Y. Hu, and F. Wu, Sparse and low-rank subspace data clustering with manifold regularization learned by local linear embedding, Applied Sciences 8 (2018), 2175.