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Shi Zhou and Raul Mondragén

« Accurately modeling the internet topology
Phys. Rev. E 70 066108 (2004) 1

» Network parameters: I

> number of nodes, humber of links. Biverage degree, Bxponent of power law,
kich-club connectivity, inaximum degree, Hegree distribution, I
characteristic path length, verage triangle coefficient, I
maximum triangle coefficient, bverage quadrangle coefficient, I
maximum quadrangle coefficient, iverage Ic,,,,l,iveruge betweenness, I
maximum betweenness. . . 1

> girth, spectrum, ... I
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Motivation

* we use many random graph models in network
applications. . . 1

* but rarely specify the statistical ensemble precisely i
* SO even the averages we compute are suspect i

% and even the famous Barabasi-Albert scale-free model has
known problems i

we need a unified, rigorous framework |1

« related ideas in earlier literature:

> Markov random fields |l

p* models of social networks |l
Ising-type models in physics I
agricultural field trialsll
image processing I

vvVvvVvVvVvy
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Dependency graphs (Frank, Strauss, Besag, ...)

* consider a random vector X = (X1, Xs,..., X)) 1
* P(x) =exp(Q(z))/ > expQ(z) & Q(z) = log P(x)+const

> only restriction P(z) >0 Vzl

« let D be the dependency graph of X; i.e. i~ j < x; not
independent of z;1

> e.g. all x; independent: empty graphll

> e.g. Markov chain: line graphl

> e.g. multivariate Gaussian: complete graph (generically)
 inclusion-exclusion principle Q(z) =3 c(1a. _my As(@s) 1

> x, = components of = corresponding to elements of sl

b PriniA] = X, PriA] =Y, PriA,UA]+... 1

i<j

« Hammersley-Clifford theorem: A; =0 unless s is a clique of D
> a clique is a complete subgraph
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Markov graphs

« to apply to a graph g with edge dependencies, let X be the
edge indicator functionsi

* this defines the dependency graph D(g) of g: D(g) contains
and edge (i,j) if X; and X, (i # j) are dependent1

* definition: ¢ is Markov if D(g) contains no edge between
edges which are disjoint in E(g) 1

* in other words, edges can only ‘interact’ if they share a
common end-point
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Markov graph example (n =4,m =5)

* cliques: {{a},{b},{c},{d},{e},{a,b},{b,c},{a,c},{d, e},{a,b,c}}

* thus
Q(z) = Xa(za)+M(xp)+A(2e) F Aa(xa) + Ae(e)

)\ab(fcav -Tb)+)\bc(xb7 xc)+Aac(xa7 33(‘.) +/\de(l‘d7 xe)
+ Aabc(Iaa T, fc)

+
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Homogeneous Markov graphs 1

« if we require all isomorphic graphs to have the same proba-
bility, then a further simplification results: i

* let ¢(g) be the number of triangles in g1
* let si(g) be the number of k-stars in g1

* then P(g) can only depend on t(g) and si(g), in the form

Palo) = 575 o {Bot(g)JrZ o sk(g>]
k=1

where 3; are fixed parameters 1

« here Z(8) = Y, exp {,@Ut(ng’;j B sk(g)]
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Homogeneous Markov graphs 2

* alternatively, we may use d;, the number of nodes of degree

7 (sk(9) = 250k (1) di(g)) 1
* and let 6(g) =X, (1) By; then

n—1

exp [Oot(9)+) 0;d;(g) | 1

j=1

Py(g) = %

* in other words, the Hamiltonian can only be a linear function

of the number of triangles and k-stars1

* note: if A if the adjacency matrix of g, then m(g) = di(g9) =
tr (A%) /2 is the number of edges and t(g) = tr (A%) /6
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Exponential random graphs

* fix a number of nodes n 1
* consider the set G(n) of all graphs on n nodesi
* we will assign to each g € G(n) a probability P(g)1

* let © = {z1,2,,...} be a set of functions on G(n) representing
properties we are interested in, for example
> x1(g)=number of edges
> x2(g)=number of nodes of degree 3
> x3(g)=number of trianglesl

* we then assign the probabilities P by
1
Py(g) = % exp (61x1+602x9+. . .)
where Z(0) = 3° cqn) exp (0121402224 . )
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Statistical mechanics
> Oimi(g)l

* probability of g: Py(g) =exp (H(0,9))/Z(0)1
>, exp (H(0,9))1
=22, Polg) log(Py(g))1

* S is maximized by our choice of P1
log(Z(6)) 1

* Hamiltonian: H(6,g) =

* partition function: Z(¢) =

* entropy S(0) =

* free energy: F(0) =

x Efu] = 420
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Exactly soluble example - Bernoulli model G{n,p}

* g € G{n,p} has n nodes and each possible edge appears
independently with fixed probability p1

* let z(g) = number of edges in graph g1
* H(0,9) =0m(g)®

* Z(0) = (1+exp(—0) ()1

* p=1/(1+exp(0))

* F(0) = (3) log(1+exp(—6))1

()™ (1= p)(8) =m0 as expected 1

+ which gives P,(g) = (

=()p

* E[z] =m
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Example - exact likelihood for all 5-node graphs

Likelihood of parameters, given a
graph: L(0|g) < Py(g). (Loglikeli-
hood: [(8]g) = log Py(g)+const.)

Each figure shows the likelihood for
one of the 34 graphs, the param-
eters corresponding to the number
of nodes of degrees one and two.
i.e. Hy(g) = 01d1(g)+62d2(g)
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Metropolis simulation

« works by defining a random walk in G which has equilibrium
distribution equal to our desired P1

* typically we choose a pair of nodes, and then flip its state

Metropolis simulation example

* 18 nodes; graph shows fluctuations in m(g)

90
0.08

Metropolised independence sampling (MIS) 1

* consider the target distribution 71'9(j) = exp(]log@)/Z()
Z(0) = (1-60")/(1—0) on the set {0,1,2,. —1}

) o : * an MIS scheme is 1
depending on whether the flip is energetically favourable i 80
(0) start at x =n—11
(1) choose a proposal dyad i,j € N(g) uniformly at random Il " 006
g 70 (1) choose a proposal y € X uniformly at random Il
(2) compute the energy change 6H that would occur if the E
dyad (i,j) were flippedl ; 60 Eooa (2) if y<az or u<6' " u~U(0,1), then accept the proposal;
) tx=yl
(3) if 6H or uw < exp(6H), uw ~ U(0,1), then accept the proposal; * § ‘ ‘I V ;E ie. setz=y
i.e. flip the edgel = f i (3) g0 to (1)1
4) go to (1)1 00 : : s
@ soto * note that this scheme ignores the current position z and
* estimate loglikelihood by (where z is the vector of graph assumes no knowledge of 7. In general, we can do better
statistics, Orer @ reference value of graph parameters (hopefully 050 4xiF  6x10 810 00 =% % e 10 @ %
close to the true ones) and rzgaa the statistics from the data): steps number of edges
1(0) —1(Orer) = —log (exp[(1(8) —(Orer)) - (2(t) —Tdata)])
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Metropolised independence sampling 2 What next? Some references (amongst many)

« for this example, it can be proven [Diaconis & Saloff-Coste

1998] that
1 1 2k
E_ < = (1_=
4| M*—x|| < 1=6) @1 (1 n> 1

2

1

N

log(distance to equilibrium)

e} 200 400 600 800 100¢
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* directed graphsi
* perturbation theory (around Bernoulli model?) I
* more rapidly converging sampling schemes I

* parameter estimation for real examples by maximum likelihood
(e.g. internet AS graph)1

* ...
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O Frank & D Strauss Markov graphs J Am Stat Ass 81, 832-842
(1986)

P Diaconis & L Saloff-Coste What do we know about the
Metropolis algorithm? J Comp Sys Sci 57, 20-36 (1998)

Z Burda & J Correia & A Krzywicki Statistical ensemble of
scale-free random graphs
http://xxx.soton.ac.uk/abs/cond-mat/0104155

J Berg & M Lassig Correlated random networks
http://xxx.soton.ac.uk/abs/cond-mat/0205589

J Park & M Newman The statistical mechanics of networks
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Keith Briggs Exponential random graphs 18 of 18



