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Initial motivations

o dimension 1: monitoring roads,
boundaries of restricted areas

e random: automatic deployment
along riversides difficult of access



Distributing along roads

Transmission radius R > road width W.

Then a 2-dim network of (x;, z;) is
connected iff the 1-dim network of x;
with radius v R?2 — W2 is connected.
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Filling a 2-dimensional area

Distributing sensors along a snake-like
path fills an area if the distance between
adjacent branches D < Rv/3/2.




What is random?

o common: all (positions of) sensors
have a prescribed density function

o practical: deploy sensors one by
one along a trajectory of a vehicle,

so the distance between successive
sensors has a prescribed density



Our assumptions

e Ris atransmission radius

« sensors are deployed in [0, L],
a sink node is fixed at xp = 0

e f1,..., I, are independent densities
of distances between sensors:
PO < x;— X1 < R) = [ f(s)ds.



Connectivity and coverage

For a given probability and densities

o find a minimal number of randomly
deployed sensors in [0, L] such that
the resulting network is connected;

e find a minimal number of random
sensors such that the network is
connected and covers [0, L].



Key steps of our solution

o For arbitrary densities f4,. .., f,,
compute the probability P, that the
network of n sensors is connected.

e Find estimates of n such that P, is
greater than the given probability.



Conditional probabilities

Given densities fy, . . ., f, of distances,
Y1, ..., Yyn are naturally defined on [0, L],
but the network should be proper, i.e.
all sensors are in [0, L] or >_7 , y; < L.

We compute the probability that the
network is connected if it is proper.



2-sensor networks

A network of 2 sensors with distances
y1 = x1 — 0, y» = Xo — Xq is represented
by (y1,¥2) € {y1,¥2 >0y + y2 < L}.
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Simplest non-trivial case
The probability of connectivity is

[ 2(R/L) ifR<L/2,
4(R/L) —2(R/L? -1 ifR>L/2.




Connectivity Theorem
The probability of connectivity is

P, = vn(R,L)/vy(L, L), where

vo(r,)=1,r,1>0;
Va(r,1)=0,r<0or/<0;
Vo(r,)=1,r>1>0,n>0;
r
Va(r, 1) = [ fo(S)Vn1(r, 1 — 8)ds, r < |
0
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Pn = vn(R,L)/vn(L, L)

closed formula for finite networks
arbitrary different densities

can be computationally difficult
explicit for important distributions
implies simple estimates for n



The recursive function

Vna(r, 1) is the probability that random
distances having densities fi, ..., f,

n
satisfy Z yi<land0 <y <r, eqg.

v1(, f0f1 s)ds, r < |,

V2( ) = fO f2 V1 r /—S)dS

Vn(L, ) the network is proper,
(

va(R, L): the network is connected.



Coverage Theorem

The probability of coverage is

(Va(R, L) — va(R, L — R))/va(L, L).

Va(R, L)
Va(L, L)

vn(R, L — R)/vs(L, L): connected
network if proper on [0, L — A].

: connected if proper on [0, L],




Uniform Corollary

If all ; = 1/L then the probability is
i<L/R

S (-1)"(7)(1 _iR/L)".
i=0 /
P{ = R/L: connected with the sink.

oo [ 2AR/LP if R<L/2,
>\ 4R/L)—2(R/L? -1 ifR>L/2.



Uniform case: simulations

L = 1km, R = 50m, n < 200 sensors.




Uniform case: estimate

Set Q = (L/R) — 1. The network is
connected with a probability p > 2/3 if

n> g(1o)+\/(304_1)2 +6Q2 (%—1).

Transmission Radius, m. [ 200 [ 100 | 50 25

Min Number of Sensors | 29 | 69 | 157 | 349

Estimate of Min Number | 83 | 283 | 905 | 2610



Uniform case: conclusions

— less effective than non-random

— rough estimate, not optimal

+ quadratic estimate is used later

+ can be improved using Taylor
approximations of degrees 4, 5

+ non-trivial inequalities 0 < P < 1



A constant density: graph

Let f=1/(b— a) over [a, b] C [0, L].
o

1/(b—a)

n=1:PO0<y;<R)=(R—a)/(b— a).



Constant Corollary
If all f;, = 1/(b— a) then the probability is

S (1) (0)(L— a(n — k) — RK)"
pc _ k=0

S (1)(0)(L— a(n — k) — bk)"

L-a)-(L-R) R-a
L - b-—a’



Constant case: simulations

L =1km, R =50m, a=10m, b = 80m.




Constant case: estimate

The network is connebcted with
a probability p if % < R < band

3
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For all p not too close to 1, the 2nd
estimate holds: L+ a— b < an < L.



Constant case: conclusions
Constant density over [0.2R, 1.6A].

Transmission Radius, m. | 200 | 150 | 100 | 50 | 25
Min Number of Sensors | 14 | 19 | 30 | 63 | 132
Estimate of Min Number | 18 | 27 | 43 | 93 | 193
Max Number of Sensors | 25 | 34 | 50 | 100 | 200

+ minimal practical assumptions
+ very simple effective estimate

+ non-trivial inequalities 0 < PJ < 1



Exponential Corollary

If the distances between successive
sensors have the density f(s) = ce™*°
on [0, L], then the probability of

va(R, L)

Va(L, L)

i<l/r o 1 L
g (ME (1 g n§i M=y
i) 2]

i=0

y Vn(r7 /) —

connectivity is Pg =




Exponential conclusions

Estimate: as in the uniform case.

The denominator tengs to O fast:
n_ .
va(L,L) =1— et (ALY/]!
j=0
— unpractical: throw on the alert
— sensors are too close to each other



Normal distribution

f(s) = - F e~ (s=n?/20% on [0, L]

then the distances between successive
sensors are close to the mean p, e.g.
very likely to be in [ — 3o, 1 + 30]

Reasonable to assume: u < R, nu < L.



Normal case: estimate

The network with normal distances is
connected with a given probability p if

o< min {pm -p) (¢4ML+02¢42(5> - a¢1(p))2}
€ o

d(x) =

1 X
— e
Ve L. z :

~5/2qg, 5:¢<_£>+1 —cb(R_”).



Normal case: example
1 =0.6R,oc=01R, p=0.9975.
Then ¢~ '(p) ~ 2.8, ¢ ~ 0.000063.
R =25m: n < p(1 —p)/e = 40.

R > 50m: the 2nd estimate is close to

o®~ — o®! 2
Ly VAL 2¢42l55) ()




Normal case: table

Let L = 1km, u = 0.6R,0 = 0.1R.
Transmission Radius, m. | 200 | 150 | 100 | 50 | 25

Estimate of Max Number | 7 | 11 | 16 |33 40

6 non-random sensors are enough for
the radius R = 150m: 6/11 ~ u/R.



All cases: conclusions

exponential: too dense networks
normal: ideal density = ideal results
uniform: a useful theoretical exercise
constant over [a, b]: very reasonable
more complicated: piecewise constant?



Ideas of proofs

e induction on the number of sensors:
adding 1 sensor keeps connectivity
if it is close to the previous one

o the key probability v,(r,/) is
an iterated convolution of densities
computed by the Laplace transform



More explicit formulae

o heterogeneous networks: distances
have different constant densities

 building densities from blocks:
any piecewise constant density

e more can be produced easily



A 3-step density: graph

f

/R

T/R—C

R/2 R| 3R/2| 1

C, R are chosen so that fOL f(s)ds =1.



A 3-step density: formula

The probability of connectivity is P, =

n m n—-m(_Aq\ki+ke(| _ _ n
3 Z( 1)+ %(L — (2ky + ko + n—m)R/2)

M=0 Kky—0 kp—0 dmki!(m — ki) ka!(n — m — ky)!

n m n-m (_1 )k1+k2(L — (2/(1 +2Kko + N — m)H/Z)”

2. 2. 2.

m—=0 ky—0 ky—0 Amki!(M — k))ko!(n— m — k)|

dn=C"(1/R— C)"", the sums are
over all m, ky, ko if the terms > 0.



A 3-step density: simulations
Let L = 1km, R =50m, C = 0.9/R.
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A 3-step density: table

Transmission Radius, m. | 250 | 200 | 150 | 100 | 50

Min Number of Sensors | 12 | 17 | 25 | 44 | 105

+ flexible practical assumptions
+ reasonable estimates of min number
+ non-trivial inequalities 0 < P, < 1



Open problem 1

Compute the exact probability of
connectivity if the distances between
successive sensors have a truncated
normal density on [0, L].



Open problem 2

For a given segment [0, L] and number
n of sensors, find an optimal density of
distances between successive sensors
to maximise the probabilities of
connectivity and coverage.



Open problem 3

Compute the probabilities of
connectivity and coverage if sensors are
randomly deployed along a non-straight
trajectory filling a 2-dimensional area.



